雪花算法snowflake详解,附演算验证过程

1.snowflake简介

互联网快速发展的今天,分布式应用系统已经见怪不怪,在分布式系统中,我们需要各种各样的ID,既然是ID那么必然是要保证全局唯一,除此之外,不同当业务还需要不同的特性,比如像并发巨大的业务要求ID生成效率高,吞吐大;比如某些银行类业务,需要按每日日期制定交易流水号;又比如我们希望用户的ID是随机的,无序的,纯数字的,且位数长度是小于10位的。等等,不同的业务场景需要的ID特性各不一样,于是,衍生了各种ID生成器,但大多数利用数据库控制ID的生成,性能受数据库并发能力限制,那么有没有一款不需要依赖任何中间件(如数据库,分布式缓存服务等)的ID生成器呢?本着取之于开源,用之于开源的原则,今天,特此介绍Twitter开源的一款分布式自增ID算法snowflake,并附上算法原理推导和演算过程!

snowflake算法是一款本地生成的(ID生成过程不依赖任何中间件,无网络通信),保证ID全局唯一,并且ID总体有序递增,性能每秒生成300w+。

2.snowflake算法原理

snowflake生产的ID是一个18位的long型数字,二进制结构表示如下(每部分用-分开):

0 - 00000000 00000000 00000000 00000000 00000000 0 - 00000 - 00000 - 00000000 0000

第一位未使用,接下来的41位为毫秒级时间(41位的长度可以使用69年,从1970-01-01 08:00:00),然后是5位datacenterId(最大支持2^5 =32个,二进制表示从00000-11111,也即是十进制0-31),和5位workerId(最大支持2^5 =32个,原理同datacenterId),所以datacenterId*workerId最多支持部署1024个节点,最后12位是毫秒内的计数(12位的计数顺序号支持每个节点每毫秒产生2^12=4096个ID序号).

所有位数加起来共64位,恰好是一个Long型(转换为字符串长度为18).

单台机器实例,通过时间戳保证前41位是唯一的,分布式系统多台机器实例下,通过对每个机器实例分配不同的datacenterId和workerId避免中间的10位碰撞。最后12位每毫秒从0递增生产ID,再提一次:每毫秒最多生成4096个ID,每秒可达4096000个。理论上,只要CPU计算能力足够,单机每秒可生产400多万个,实测300w+,效率之高由此可见。

(该节改编自:http://www.cnblogs.com/relucent/p/4955340.html)

3.snowflake算法源码(java版)


@ToString
@Slf4j
public class SnowflakeIdFactory {
 
    private final long twepoch = 1288834974657L;
    private final long workerIdBits = 5L;
    private final long datacenterIdBits = 5L;
    private final long maxWorkerId = -1L ^ (-1L << workerIdBits);
    private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    private final long sequenceBits = 12L;
    private final long workerIdShift = sequenceBits;
    private final long datacenterIdShift = sequenceBits + workerIdBits;
    private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    private final long sequenceMask = -1L ^ (-1L << sequenceBits);
 
    private long workerId;
    private long datacenterId;
    private long sequence = 0L;
    private long lastTimestamp = -1L;
 
 
 
    public SnowflakeIdFactory(long workerId, long datacenterId) {
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        this.workerId = workerId;
        this.datacenterId = datacenterId;
    }
 
    public synchronized long nextId() {
        long timestamp = timeGen();
        if (timestamp < lastTimestamp) {
            //服务器时钟被调整了,ID生成器停止服务.
            throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }
        if (lastTimestamp == timestamp) {
            sequence = (sequence + 1) & sequenceMask;
            if (sequence == 0) {
                timestamp = tilNextMillis(lastTimestamp);
            }
        } else {
            sequence = 0L;
        }
 
        lastTimestamp = timestamp;
        return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift) | (workerId << workerIdShift) | sequence;
    }
 
    protected long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }
 
    protected long timeGen() {
        return System.currentTimeMillis();
    }
 
    public static void testProductIdByMoreThread(int dataCenterId, int workerId, int n) throws InterruptedException {
        List tlist = new ArrayList<>();
        Set setAll = new HashSet<>();
        CountDownLatch cdLatch = new CountDownLatch(10);
        long start = System.currentTimeMillis();
        int threadNo = dataCenterId;
        Map idFactories = new HashMap<>();
        for(int i=0;i<10;i++){
            //用线程名称做map key.
            idFactories.put("snowflake"+i,new SnowflakeIdFactory(workerId, threadNo++));
        }
        for(int i=0;i<10;i++){
            Thread temp =new Thread(new Runnable() {
                @Override
                public void run() {
                    Set setId = new HashSet<>();
                    SnowflakeIdFactory idWorker = idFactories.get(Thread.currentThread().getName());
                    for(int j=0;j setOne = new HashSet<>();
        Set setTow = new HashSet<>();
        long start = System.currentTimeMillis();
        for (int i = 0; i < n; i++) {
            setOne.add(idWorker.nextId());//加入set
        }
        long end1 = System.currentTimeMillis() - start;
        log.info("第一批ID预计生成{}个,实际生成{}个<<<<*>>>>共耗时:{}",n,setOne.size(),end1);
 
        for (int i = 0; i < n; i++) {
            setTow.add(idWorker2.nextId());//加入set
        }
        long end2 = System.currentTimeMillis() - start;
        log.info("第二批ID预计生成{}个,实际生成{}个<<<<*>>>>共耗时:{}",n,setTow.size(),end2);
 
        setOne.addAll(setTow);
        log.info("合并总计生成ID个数:{}",setOne.size());
 
    }
 
    public static void testPerSecondProductIdNums(){
        SnowflakeIdFactory idWorker = new SnowflakeIdFactory(1, 2);
        long start = System.currentTimeMillis();
        int count = 0;
        for (int i = 0; System.currentTimeMillis()-start<1000; i++,count=i) {
            /**  测试方法一: 此用法纯粹的生产ID,每秒生产ID个数为300w+ */
            idWorker.nextId();
            /**  测试方法二: 在log中打印,同时获取ID,此用法生产ID的能力受限于log.error()的吞吐能力.
             * 每秒徘徊在10万左右. */
            //log.error("{}",idWorker.nextId());
        }
        long end = System.currentTimeMillis()-start;
        System.out.println(end);
        System.out.println(count);
    }
 
    public static void main(String[] args) {
        /** case1: 测试每秒生产id个数?
         *   结论: 每秒生产id个数300w+ */
        //testPerSecondProductIdNums();
 
        /** case2: 单线程-测试多个生产者同时生产N个id,验证id是否有重复?
         *   结论: 验证通过,没有重复. */
        //testProductId(1,2,10000);//验证通过!
        //testProductId(1,2,20000);//验证通过!
 
        /** case3: 多线程-测试多个生产者同时生产N个id, 全部id在全局范围内是否会重复?
         *   结论: 验证通过,没有重复. */
        try {
            testProductIdByMoreThread(1,2,100000);//单机测试此场景,性能损失至少折半!
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
 
    }
}

4.snowflake算法推导和演算过程
说明:

演算使用的对象实例:SnowflakeIdFactory idWorker = new SnowflakeIdFactory(1, 2);

运行时数据workerId=1,datacenterId=2,分别表示机器实例的生产者编号,数据中心编号;

sequence=0表示每毫秒生产ID从0开始计数递增;

以下演算基于时间戳=1482394743339时刻进行推导。

一句话描述:以下演算模拟了1482394743339这一毫秒时刻,workerId=1,datacenterId=2的id生成器,生产第一个id的过程。


验算过程.png

转自:详解Twitter开源分布式自增ID算法snowflake,附演算验证过程

你可能感兴趣的:(雪花算法snowflake详解,附演算验证过程)