力扣-232 用栈实现队列

1.题目描述

请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(pushpoppeekempty):

实现 MyQueue 类:

  • void push(int x) 将元素 x 推到队列的末尾
  • int pop() 从队列的开头移除并返回元素
  • int peek() 返回队列开头的元素
  • boolean empty() 如果队列为空,返回 true ;否则,返回 false

说明:

  • 你 只能 使用标准的栈操作 —— 也就是只有 push to toppeek/pop from topsize, 和 is empty 操作是合法的。
  • 你所使用的语言也许不支持栈。你可以使用 list 或者 deque(双端队列)来模拟一个栈,只要是标准的栈操作即可。

2.示例

示例 1:

输入:
["MyQueue", "push", "push", "peek", "pop", "empty"]
[[], [1], [2], [], [], []]
输出:
[null, null, null, 1, 1, false]

解释:
MyQueue myQueue = new MyQueue();
myQueue.push(1); // queue is: [1]
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
myQueue.peek(); // return 1
myQueue.pop(); // return 1, queue is [2]
myQueue.empty(); // return false

3.思路分析

此题利用两个栈实现队列。

首先,我们需要定义栈的结构及基本的函数。其次,定义由入栈(inStack)和出栈(outStack)构成的队列以及队列的我们所需操作调用的一些函数。

栈定义时,使用整形指针stk指向栈的数据存储区域,使用stkSize表示当前栈中的元素个数,使用stkCapacity表示栈的容量。
栈的基本函数:1.stackCreate()2.stackPush()3.stackPop()4.stackTop()5.stackEmpty()6.stackFree

队列定义:由入栈(inStack)和出栈(outStack)构成。

队列所需调用函数:1.myQueueCreate() 2.in2out() 3.myQueuePush()4.myQueuePop()5.myQueuePeek() 6.myQueueEmpty()7.myQueueFree()

4.代码

typedef struct {
    int* stk;
    int stkSize;
    int stkCapacity;
} Stack;

Stack* stackCreate(int cpacity) {
    Stack* ret = malloc(sizeof(Stack));
    ret->stk = malloc(sizeof(int) * cpacity);
    ret->stkSize = 0;
    ret->stkCapacity = cpacity;
    return ret;
}

void stackPush(Stack* obj, int x) {
    obj->stk[obj->stkSize++] = x;
}

void stackPop(Stack* obj) {
    obj->stkSize--;
}

int stackTop(Stack* obj) {
    return obj->stk[obj->stkSize - 1];
}

bool stackEmpty(Stack* obj) {
    return obj->stkSize == 0;
}

void stackFree(Stack* obj) {
    free(obj->stk);
}

typedef struct {
    Stack* inStack;
    Stack* outStack;
} MyQueue;

MyQueue* myQueueCreate() {
    MyQueue* ret = malloc(sizeof(MyQueue));
    ret->inStack = stackCreate(100);
    ret->outStack = stackCreate(100);
    return ret;
}

void in2out(MyQueue* obj) {
    while (!stackEmpty(obj->inStack)) {
        stackPush(obj->outStack, stackTop(obj->inStack));
        stackPop(obj->inStack);
    }
}

void myQueuePush(MyQueue* obj, int x) {
    stackPush(obj->inStack, x);
}

int myQueuePop(MyQueue* obj) {
    if (stackEmpty(obj->outStack)) {
        in2out(obj);
    }
    int x = stackTop(obj->outStack);
    stackPop(obj->outStack);
    return x;
}

int myQueuePeek(MyQueue* obj) {
    if (stackEmpty(obj->outStack)) {
        in2out(obj);
    }
    return stackTop(obj->outStack);
}

bool myQueueEmpty(MyQueue* obj) {
    return stackEmpty(obj->inStack) && stackEmpty(obj->outStack);
}

void myQueueFree(MyQueue* obj) {
    stackFree(obj->inStack);
    stackFree(obj->outStack);
}

5.时间复杂度和空间复杂度

时间复杂度:O(n)

空间复杂度:O(n)

你可能感兴趣的:(leetcode,算法,java)