传统的C++语法中就有引用的语法,而C++11中新增了的右值引用语法特性,所以从现在开始我们之前学习的引用就叫做左值引用。无论左值引用还是右值引用,都是给对象取别名。
左值是一个表示数据的表达式,如变量名或解引用的指针。
int main()
{
// 以下的p、b、c、*p都是左值
int* p = new int(0);
int b = 1;
const int c = 2;
return 0;
}
右值也是一个表示数据的表达式,如字母常量、表达式的返回值、函数的返回值(不能是左值引用返回)等等。
int main()
{
double x = 1.1, y = 2.2;
// 以下几个都是常见的右值
10;
x + y;
fmin(x, y);
return 0;
}
左值引用就是对左值的引用,给左值取别名,用过“&”来声明
int main()
{
// 以下的p、b、c、*p都是左值
int* p = new int(0);
int b = 1;
const int c = 2;
// 以下几个是对上面左值的左值引用
int*& rp = p;
int& rb = b;
const int& rc = c;
int& pvalue = *p;
return 0;
}
右值引用就是对右值的引用,给右值取别名,通过“&&”来声明。
int main()
{
double x = 1.1, y = 2.2;
// 以下几个都是常见的右值
10;
x + y;
fmin(x, y);
// 以下几个都是对右值的右值引用
int&& rr1 = 10;
double&& rr2 = x + y;
double&& rr3 = fmin(x, y);
// 这里编译会报错:error C2106: “=”: 左操作数必须为左值
//10 = 1;
//x + y = 1;
//fmin(x, y) = 1;
return 0;
}
需要注意的是,右值是不能取地址的,但是给右值取别名后,会导致右值被存储到特定位置,这时这个右值可以被取到地址,并且可以被修改,如果不想让被引用的右值被修改,可以用const修饰右值引用。
int main()
{
double x = 1.1, y = 2.2;
int&& rr1 = 10;
const double&& rr2 = x + y;
rr1 = 20;
rr2 = 5.5; // 报错
return 0;
}
左值引用可以引用右值吗?
- 左值引用不能引用右值,因为这涉及权限放大的问题,右值是不能被修改的,而左值引用是可以修改的。
- 但是const左值引用可以引用右值,因为const左值引用能够保证被引用的数据不会被修改。
因为const左值引用既可以引用左值,也可以引用右值。
int main()
{
int a = 0;
int b = 1;
int* p = &a;
a + b;
//左值引用给左值取别名
int& ref1 = a;
//左值引用给右值取别名
//int& ref2 = (a + b);
const int& ref2 = (a + b); //(a+b)是临时变量,具有常性,所以需要加const,不然就是权限的放大了
return 0;
}
右值引用可以引用左值吗?
move函数是C++11标准提供的一个函数,被move后的左值能够赋值给右值引用。
int main()
{
int a = 0;
int b = 1;
int* p = &a;
a + b;
//右值引用给右值取别名
int&& ref3 = (a + b);
//右值引用给move后左值取别名
//int&& ref4 = a;
int&& ref4 = move(a);
return 0;
}
虽然const左值引用既能接收左值,又能接收右值,但左值引用终究存在短板,而C++11提出的右值引用就是用来解决左值引用的短板的。
为了更好的说明问题,这里需要借助一个深拷贝的类,下面模拟实现了一个简化版的string类。类当中实现了一些基本的成员函数,并在string的拷贝构造函数和赋值运算符重载函数当中打印了一条提示语句,这样当调用这两个函数时我们就能知道。
namespace zl
{
class string
{
public:
typedef char* iterator;
iterator begin()
{
return _str;
}
iterator end()
{
return _str + _size;
}
string(const char* str = "")
:_size(strlen(str))
, _capacity(_size)
{
//cout << "string(char* str)" << endl;
_str = new char[_capacity + 1];
strcpy(_str, str);
}
// s1.swap(s2)
void swap(string& s)
{
::swap(_str, s._str);
::swap(_size, s._size);
::swap(_capacity, s._capacity);
}
// 拷贝构造
string(const string& s)
:_str(nullptr)
{
cout << "string(const string& s) -- 深拷贝" << endl;
string tmp(s._str);
swap(tmp);
}
//移动构造
string(string&& s)
:_str(nullptr)
{
cout << "string(string&& s) -- 移动拷贝" << endl;
swap(s);
}
// 赋值重载
string& operator=(const string& s)
{
cout << "string& operator=(string s) -- 深拷贝" << endl;
string tmp(s);
swap(tmp);
return *this;
}
移动构造
//string(string&& s)
// :_str(nullptr)
// , _size(0)
// , _capacity(0)
//{
// cout << "string(string&& s) -- 移动语义" << endl;
// swap(s);
//}
// 移动赋值
string& operator=(string&& s)
{
cout << "string& operator=(string&& s) -- 移动语义" << endl;
swap(s);
return *this;
}
~string()
{
delete[] _str;
_str = nullptr;
}
char& operator[](size_t pos)
{
assert(pos < _size);
return _str[pos];
}
void reserve(size_t n)
{
if (n > _capacity)
{
char* tmp = new char[n + 1];
strcpy(tmp, _str);
delete[] _str;
_str = tmp;
_capacity = n;
}
}
void push_back(char ch)
{
if (_size >= _capacity)
{
size_t newcapacity = _capacity == 0 ? 4 : _capacity * 2;
reserve(newcapacity);
}
_str[_size] = ch;
++_size;
_str[_size] = '\0';
}
//string operator+=(char ch)
string& operator+=(char ch)
{
push_back(ch);
return *this;
}
string operator+(char ch)
{
string tmp(*this);
tmp += ch;
return tmp;
}
const char* c_str() const
{
return _str;
}
private:
char* _str;
size_t _size;
size_t _capacity; // 不包含最后做标识的\0
};
}
在说明左值引用的短板之前,先来看看左值引用的使用场景:
void func1(bit::string s)
{}
void func2(const bit::string& s)
{}
int main()
{
bit::string s1("hello world");
// func1和func2的调用我们可以看到左值引用做参数减少了拷贝,提高效率的使用场景和价值
func1(s1);
func2(s1);
// string operator+=(char ch) 传值返回存在深拷贝
// string& operator+=(char ch) 传左值引用没有拷贝提高了效率
s1 += '!';
return 0;
}
因为模拟实现的是string类的拷贝构造函数当中打印了提示语句,因此运行代码后通过程序运行结果就知道,值传参时调用了string的拷贝构造函数。
此外,因为string的+=运算符重载函数是左值引用返回的,因此在返回+=后的对象时不会调用拷贝构造函数,但如果将+=运算符重载函数改为传值返回,那么重新运行代码后你就会发现多了一次拷贝构造函数的调用。
我们都知道string的拷贝是深拷贝,深拷贝的代价是比较高的,应该尽量避免不必要的深拷贝操作,因此这里左值引用起到的作用还是很明显的。
左值引用虽然能避免不必要的拷贝操作,但左值引用并不能完全避免。
如果函数返回的对象是一个局部变量,该变量出了函数作用域就被销毁了,这种情况下不能用左值引用作为返回值,只能以传值的方式返回,这就是左值引用的短板。
比如我们模拟实现一个int版本的to_string函数,这个to_string函数就不能使用左值引用返回,因为to_string函数返回的是一个局部变量。
namespace zl
{
string to_string(int value)
{
bool flag = true;
if (value < 0)
{
flag = false;
value = 0 - value;
}
string str;
while (value > 0)
{
int x = value % 10;
value /= 10;
str += ('0' + x);
}
if (flag == false)
{
str += '-';
}
std::reverse(str.begin(), str.end());
return str;
}
}
此时调用to_string函数返回时,就一定会调用string的拷贝构造函数。
int main()
{
zl::string valStr = zl::to_string(1234);
cout << valStr.c_str() << endl;
std::string s1("hello");
std::string s2 = s1;
std::string s3 = move(s1);
//move(s1); //move(s1)的返回值是右值
//std::string s3 = s1;
return 0;
}
C++11提出右值引用就是为了解决左值引用的这个短板,但解决方式并不是简单的将右值引用作为函数的返回值。
右值引用和移动语句解决上述问题的方式就是,给当前模拟实现的string类增加移动构造和移动赋值方法。
移动构造是一个构造函数,该构造函数的参数是右值引用类型的,移动构造本质就是将传入右值的资源窃取过来,占为己有,这样就避免了进行深拷贝,所以它叫做移动构造,就是窃取别人的资源来构造自己的意思。
在当前的string类中增加一个移动构造函数,该函数要做的就是调用swap函数将传入右值的资源窃取过来,为了能够更好的得知移动构造函数是否被调用,可以在该函数当中打印一条提示语句。
namespace zl
{
class string
{
public:
//移动构造
string(string&& s)
:_str(nullptr)
, _size(0)
, _capacity(0)
{
cout << "string(string&& s) -- 移动构造" << endl;
swap(s);
}
private:
char* _str;
size_t _size;
size_t _capacity;
};
}
移动构造和拷贝构造的区别:
给string类增加移动构造后,对于返回局部string对象的这类函数,在返回string对象时就会调用移动构造进行资源的移动,而不会再调用拷贝构造函数进行深拷贝。
int main()
{
cl::string s = cl::to_string(1234);
return 0;
}
说明:
移动赋值是一个赋值运算符重载函数,该函数的参数是右值引用类型的,移动赋值也是将传入右值的资源窃取过来,占为己有,这样就避免了深拷贝,所以它叫移动赋值,就是窃取别人的资源来赋值给自己的意思。
在当前的string类中增加一个移动赋值函数,该函数要做的就是调用swap函数将传入右值的资源窃取过来,为了能够更好的得知移动赋值函数是否被调用,可以在该函数中打印一条提示语句。
namespace cl
{
class string
{
public:
//移动赋值
string& operator=(string&& s)
{
cout << "string& operator=(string&& s) -- 移动赋值" << endl;
swap(s);
return *this;
}
private:
char* _str;
size_t _size;
size_t _capacity;
};
}
移动赋值和原有operator=函数的区别:
现在给string增加移动构造和移动赋值以后,就算是用一个已经定义过的string对象去接收to_string函数的返回值,此时也不会存在深拷贝。
int main()
{
cl::string s;
//...
s = cl::to_string(1234);
return 0;
}
此时当to_string函数返回局部的string对象时,会先调用移动构造生成一个临时对象,然后再调用移动赋值将临时对象的资源转移给我们接收返回值的对象,这个过程虽然调用了两个函数,但这两个函数要做的只是资源的移动,而不需要进行深拷贝,大大提高了效率。
说明:在实现移动赋值函数之前,该代码的运行结果理论上应该是调用一次拷贝构造,再调用一次原有的operator=函数,但由于原有operator=函数实现时复用了拷贝构造函数,因此代码运行后的输出结果会多打印一次拷贝构造函数的调用,这是原有operator=函数内部调用的。
C++11标准出来之后,STL中的容器都增加了移动构造和移动赋值。
以刚刚说的string类为例,这是string类增加的移动构造:
这是string类增加的移动赋值:
按照语法,右值引用只能引用右值,但右值引用一定不能引用左值吗?因为:有些场景下,可能真的需要用右值去引用左值实现移动语义。当需要用右值引用引用一个左值时,可以通过move函数将左值转化为右值。C++11中,std::move函数位于头文件中,该函数名字具有迷惑性,它并不搬移任何东西,唯一的功能就是将一个左值强制转化为右值引用,然后实现移动语义。
template<class _Ty>
inline typename remove_reference<_Ty>::type&& move(_Ty&& _Arg) _NOEXCEPT
{
// forward _Arg as movable
return ((typename remove_reference<_Ty>::type&&)_Arg);
}
int main()
{
bit::string s1("hello world");
// 这里s1是左值,调用的是拷贝构造
bit::string s2(s1);
// 这里我们把s1 move处理以后, 会被当成右值,调用移动构造
// 但是这里要注意,一般是不要这样用的,因为我们会发现s1的
// 资源被转移给了s3,s1被置空了。
bit::string s3(std::move(s1));
return 0;
}
说明
右值引用版本的插入函数
C++11标准出来之后,STL中的容器除了增加移动构造和移动赋值之外,STL容器插入接口函数也增加了右值引用版本。
如果list容器当中存储的是string对象,那么在调用push_back向list容器中插入元素时,可能会有如下几种插入方式:
int main()
{
zl::list<zl::string> lt;
zl::string s1("hello world");
lt.push_back(s1);
lt.push_back(zl::string("hello world"));
lt.push_back("hello world");
return 0;
}
list容器的push_back函数需要先构造一个结点,然后将该结点插入到底层的双链表当中。
模板中的&&不代表右值引用,而是万能引用,其既能接收左值也能接收右值。
template<typename T>
void PerfectForward(T&& t)
{
//...
}
右值引用和万能引用的区别就是,右值引用需要是确定的类型,而万能引用是根据传入实参的类型进行推导,如果传入的实参是一个左值,那么这里的形参t就是左值引用,如果传入的实参是一个右值,那么这里的形参t就是右值引用。
下面重载了四个Func函数,这四个Func函数的参数类型分别是左值引用、const左值引用、右值引用和const右值引用。在主函数中调用PerfectForward函数时分别传入左值、右值、const左值和const右值,在PerfectForward函数中再调用Func函数。
void Fun(int &x){ cout << "左值引用" << endl; }
void Fun(const int &x){ cout << "const 左值引用" << endl; }
void Fun(int &&x){ cout << "右值引用" << endl; }
void Fun(const int &&x){ cout << "const 右值引用" << endl; }
template<typename T>
void PerfectForward(T&& t)
{
Fun(t);
}
int main()
{
PerfectForward(10); // 右值
int a;
PerfectForward(a); // 左值
PerfectForward(std::move(a)); // 右值
const int b = 8;
PerfectForward(b); // const 左值
PerfectForward(std::move(b)); // const 右值
return 0;
}
由于PerfectForward函数的参数类型是万能引用,因此既可以接收左值也可以接收右值,而我们在PerfectForward函数中调用Func函数,就是希望调用PerfectForward函数时传入左值、右值、const左值、const右值,能够匹配到对应版本的Func函数。
也就是说,右值经过一次参数传递后其属性会退化成左值,如果想要在这个过程中保持右值的属性,就需要用到完美转发。
要想在参数传递过程中保持其原有的属性,需要在传参时调用forward函数。
template<class T>
void PerfectForward(T&& t)
{
Func(std::forward<T>(t));
}
经过完美转发后,调用PerfectForward函数时传入的是右值就会匹配到右值引用版本的Func函数,传入的是const右值就会匹配到const右值引用版本的Func函数,这就是完美转发的价值。
下面模拟实现了一个简化版的list类,类当中分别提供了左值引用版本和右值引用版本的push_back和insert函数。
#pragma once
#include
namespace zl
{
template<class T>
struct list_node
{
list_node<T>* _next;
list_node<T>* _prev;
T _data;
list_node(const T& x=T())
:_next(nullptr)
,_prev(nullptr)
,_data(x)
{}
list_node(T&& x = T())
:_next(nullptr)
, _prev(nullptr)
, _data(forward<T>(x))
{}
};
//1、迭代器要么就是原生指针
//2、迭代器要么就是自定义类型对原生指针的封装,模拟指针的行为
template<class T,class Ref,class Ptr>
struct __list_iterator
{
typedef list_node<T> node;
typedef __list_iterator<T,Ref,Ptr> self;
node* _node;
__list_iterator(node* n)
:_node(n)
{}
Ref& operator*()
{
return _node->_data;
}
Ptr operator->() //it->_a1 it->->_a1 本来应该是两个->,但是为了增强可读性,省略了一个->
{
return &_node->_data;
}
self& operator++()
{
_node = _node->_next;
return *this;
}
self operator++(int)
{
self tmp(*this);
_node = _node->_next;
return tmp;
}
self& operator--()
{
_node = _node->_prev;
return *this;
}
self operator--(int)
{
self tmp(*this);
_node = _node->_prev;
return tmp;
}
bool operator!=(const self& s)
{
return _node != s._node;
}
bool operator==(const self& s)
{
return _node == s._node;
}
};
template<class T>
class list
{
typedef list_node<T> node;
public:
typedef __list_iterator<T,T&,T*> iterator;
typedef __list_iterator<T,const T&,const T*> const_iterator;
iterator begin()
{
//iterator it(_head->_next);
//return it;
return iterator(_head->_next);
}
const_iterator begin() const
{
//iterator it(_head->_next);
//return it;
return const_iterator(_head->_next);
}
iterator end()
{
//iterator it(_head);
//return it;
return iterator(_head);
}
const_iterator end() const
{
//iterator it(_head);
//return it;
return const_iterator(_head);
}
void empty_init()
{
_head = new node(T());
_head->_next = _head;
_head->_prev = _head;
}
list()
{
/*_head = new node;
_head->_next = _head;
_head->_prev = _head;*/
empty_init();
}
template <class Iterator>
list(Iterator first, Iterator last)
{
empty_init();
while (first != last)
{
push_back(*first);
++first;
}
}
//lt2(lt1) 拷贝构造传统写法
/*list(const list& lt)
{
empty_init();
for (auto e : lt)
{
push_back(e);
}
}*/
void swap(list<T>& tmp)
{
std::swap(_head, tmp._head);
}
//现代写法
list(const list<T>& lt)
{
empty_init();
list<T> tmp(lt.begin(), lt.end());
swap(tmp);
}
//lt1=lt3
list<T>& operator=(list<T> lt)
{
swap(lt);
return *this;
}
~list()
{
clear();
delete _head;
_head = nullptr;
}
void clear()
{
iterator it = begin();
while (it != end())
{
//it = erase(it);
erase(it++);
}
}
void push_back(const T& x=T())
{
/*node* tail = _head->_prev;
node* new_node = new node(x);
tail->_next = new_node;
new_node->_prev = tail;
new_node->_next = _head;
_head->_prev = new_node;*/
insert(end(), x);
}
void push_back(T&& x )
{
insert(end(), forward<T>(x));
}
void push_front(const T& x = T())
{
insert(begin(), x);
}
void pop_back()
{
erase(--end());
}
void pop_front()
{
erase(begin());
}
void insert(iterator pos, const T& x)
{
node* cur = pos._node;
node* prev = cur->_prev;
node* new_node = new node(x);
prev->_next = new_node;
new_node->_prev = prev;
new_node->_next = cur;
cur->_prev = new_node;
}
void insert(iterator pos,T&& x)
{
node* cur = pos._node;
node* prev = cur->_prev;
node* new_node = new node(forward<T>(x));
prev->_next = new_node;
new_node->_prev = prev;
new_node->_next = cur;
cur->_prev = new_node;
}
iterator erase(iterator pos)
{
assert(pos != end());
node* prev = pos._node->_prev;
node* next = pos._node->_next;
prev->_next = next;
next->_prev = prev;
delete pos._node;
return iterator(next);
}
private:
node* _head;
};
void print_list(const list<int>& lt)
{
list<int>::const_iterator it = lt.begin();
while (it != lt.end())
{
//(*it) *= 2;
cout << *it << " ";
++it;
}
cout << endl;
}
}
下面定义一个list对象,list容器中存储的就是之前模拟实现的string类,这里分别传入左值和右值调用不同版本的push_back。
int main()
{
zl::list<zl::string> lt;
zl::string s1("hello world");
lt.push_back(s1);
lt.push_back(zl::string("hello world"));
lt.push_back("hello world");
return 0;
}
调用左值引用版本的push_back函数插入元素时,会调用string原有的operator=函数进行深拷贝,而调用右值引用版本的push_back函数插入元素时,只会调用string的移动赋值进行资源的移动。
也就是说,只要想保持右值的属性,在每次右值传参时都需要进行完美转发,实际STL库中也是通过完美转发来保持右值属性的。
注意:代码中push_back和insert函数的参数T&&是右值引用,而不是万能引用,因为在list对象创建时这个类就被实例化了,后续调用push_back和insert函数时,参数T&&中的T已经是一个确定的类型了,而不是在调用push_back和insert函数时才进行类型推导的。