目录
四大函数式接口
函数型接口
Function 函数型接口
Predicate 断定型接口
Supplier 供给型接口
Consumer 消费型接口
Stream 流式计算
ForkJoin
lambda表达式,链式编程,函数式接口,Steram流式计算
函数式接口:只有一个方法的接口
传入参数T,返回类型R
只要是函数式接口,就可以用lambda表达式简化
public class FunctionDemo {
public static void main(String[] args) {
/*Function function = new Function() {
//工具类:输出输入的值
@Override
public String apply(String str) {
return str;
};
};*/
Function function = (str)->{return str;};
System.out.println(function.apply("aaa"));
}
}
有一个输入参数,返回值只能是布尔值
public class PredicateDemo {
public static void main(String[] args) {
//判断字符串是否为空
/*Predicate predicate = new Predicate() {
@Override
public boolean test(String str) {
return str.isEmpty();
}
};*/
Predicate predicate = (str)->{return str.isEmpty();};
System.out.println(predicate.test(""));
}
}
public class SuppierDemo {
public static void main(String[] args) {
//打印字符串
/*Supplier supplier = new Supplier() {
@Override
public String get() {
return "aaa";
}
};*/
Supplier supplier = ()->{return "aaa";};
System.out.println(supplier.get());
}
}
public class ConsummerDemo {
public static void main(String[] args) {
//打印字符串
/* Consumer consumer = new Consumer() {
@Override
public void accept(String s) {
System.out.println(s);
}
};*/
Consumer consumer = (s)->{System.out.println(s);};
consumer.accept("sss");
}
}
什么是Stream流式计算
- 大数据:存储+计算
- 集合、Mysql本来就是存储数据的,计算应该交给流来操作。
/**
* 题目要求: 用一行代码实现
* 1. Id 必须是偶数
* 2.年龄必须大于23
* 3. 用户名转为大写
* 4. 用户名倒序
* 5. 只能输出一个用户
**/
public class StreamDemo {
public static void main(String[] args) {
User u1 = new User(1, "a", 23);
User u2 = new User(2, "b", 23);
User u3 = new User(3, "c", 23);
User u4 = new User(6, "d", 24);
User u5 = new User(4, "e", 25);
List list = Arrays.asList(u1, u2, u3, u4, u5);
// lambda、链式编程、函数式接口、流式计算
list.stream()
.filter(user -> {return user.getId()%2 == 0;})//判断偶数
.filter(user -> {return user.getAge() > 23;})//判断大于23
.map(user -> {return user.getName().toUpperCase();})//转换大写
.sorted((user1, user2) -> {return user2.compareTo(user1);})//排序(比较user1和user2)
.limit(1)//打印一个
.forEach(System.out::println);
}
}
ForkJoin 在JDK1.7,并行执行任务!提高效率~。在大数据量速率会更快!
一个线程并发成多个去操作
大数据中:Map Reduce 核心思想->把大任务拆分为小任务!
ForkJoin 特点: 工作窃取!(B执行完后会把A没执行的任务执行)
这里面维护的是双端队列(两端都可操作)
实现原理是:双端队列!从上面和下面都可以去拿到任务进行执行!
- 如何使用ForkJoin?
- 通过ForkJoinPool来执行
- 计算任务 execute(ForkJoinTask> task)
- 计算类要去继承ForkJoinTask;
public class ForkJoinDemo extends RecursiveTask {
private long star;
private long end;
/** 临界值 */
private long temp = 1000000L;
public ForkJoinDemo(long star, long end) {
this.star = star;
this.end = end;
}
/**
* 计算方法
* @return
*/
@Override
protected Long compute() {
if ((end - star) < temp) {
Long sum = 0L;
for (Long i = star; i < end; i++) {
sum += i;
}
return sum;
}else {
// 使用ForkJoin 分而治之 计算
//1 . 计算平均值
long middle = (star + end) / 2;
ForkJoinDemo forkJoinDemo1 = new ForkJoinDemo(star, middle);
// 拆分任务,把线程压入线程队列
forkJoinDemo1.fork();
ForkJoinDemo forkJoinDemo2 = new ForkJoinDemo(middle, end);
forkJoinDemo2.fork();
long taskSum = forkJoinDemo1.join() + forkJoinDemo2.join();
return taskSum;
}
}
}
测试
public class ForkJoinTest {
private static final long SUM = 20_0000_0000;
public static void main(String[] args) throws ExecutionException, InterruptedException {
test1();
test2();
test3();
}
/**
* 使用普通方法
*/
public static void test1() {
long star = System.currentTimeMillis();
long sum = 0L;
for (long i = 1; i < SUM ; i++) {
sum += i;
}
long end = System.currentTimeMillis();
System.out.println(sum);
System.out.println("时间:" + (end - star));
System.out.println("----------------------");
}
/**
* 使用ForkJoin 方法
*/
public static void test2() throws ExecutionException, InterruptedException {
long star = System.currentTimeMillis();
ForkJoinPool forkJoinPool = new ForkJoinPool();
ForkJoinTask task = new ForkJoinDemo(0L, SUM);
ForkJoinTask submit = forkJoinPool.submit(task); //提交任务
Long along = submit.get();
System.out.println(along);
long end = System.currentTimeMillis();
System.out.println("时间:" + (end - star));
System.out.println("-----------");
}
/**
* 使用 Stream并行流计算
*/
public static void test3() {
long star = System.currentTimeMillis();
long sum = LongStream.rangeClosed(0L, SUM).parallel().reduce(0, Long::sum);
System.out.println(sum);
long end = System.currentTimeMillis();
System.out.println("时间:" + (end - star));
System.out.println("-----------");
}
}