代码随想录算法训练营day42 | 动态规划 背包问题 01背包 二维数组一维数组 |416. 分割等和子集

动态规划:背包理论

背包理论基础

对于面试的话,其实掌握01背包,和完全背包,就够用了,最多可以再来一个多重背包。

如果这几种背包,分不清,我这里画了一个图,如下:

代码随想录算法训练营day42 | 动态规划 背包问题 01背包 二维数组一维数组 |416. 分割等和子集_第1张图片

而完全背包又是也是01背包稍作变化而来,即:完全背包的物品数量是无限的。

所以背包问题的理论基础重中之重是01背包,一定要理解透!

leetcode上没有纯01背包的问题,都是01背包应用方面的题目,也就是需要转化为01背包问题。

所以我先通过纯01背包问题,把01背包原理讲清楚,后续再讲解leetcode题目的时候,重点就是讲解如何转化为01背包问题了

01 背包

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

代码随想录算法训练营day42 | 动态规划 背包问题 01背包 二维数组一维数组 |416. 分割等和子集_第2张图片

这是标准的背包问题,以至于很多同学看了这个自然就会想到背包,甚至都不知道暴力的解法应该怎么解了。

暴力解法:

每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是o(2n),这里的n表示物品数量。

所以暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!

在下面的讲解中,我举一个例子:

背包最大重量为4。

物品为:

重量 价值
物品0 1 15
物品1 3 20
物品2 4 30

问背包能背的物品最大价值是多少?

  • 二维dp数组01背包

依然动规五部曲分析一波。

1.确定dp数组以及下标的含义

对于背包问题,有一种写法, 是使用二维数组,即**dp[i][j]表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少**。

只看这个二维数组的定义,大家一定会有点懵,看下面这个图:

代码随想录算法训练营day42 | 动态规划 背包问题 01背包 二维数组一维数组 |416. 分割等和子集_第3张图片

要时刻记着这个dp数组的含义,下面的一些步骤都围绕这dp数组的含义进行的,如果哪里看懵了,就来回顾一下i代表什么,j又代表什么。

2.确定递推公式

再回顾一下dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

重点理解:

i下标为0-i的物品

j: 背包的总容量

dp[i][j]: 价值的最大总和

那么可以有两个方向推出来dp[i][j]

  • 不放物品i:由dp[i - 1][j]推出,即背包容量当前为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。不放,所以背包容量j不变

i-1:指上一个物品的价值,就是少了一个,物品从0-i编号,不放物品i就只剩下i-1编号的物品

  • 放物品i:的最大价值,要从上一个放i-1物品的最大价值推出,放了i-1时的背包容量j - weight[i],所以最大价值为dp[i - 1][j - weight[i]],那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是当前放了物品i,背包得到的最大价值

所以递归公式:

dp[i][j]=Math.max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i])

3.dp数组如何初始化

关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱

首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。如图:

代码随想录算法训练营day42 | 动态规划 背包问题 01背包 二维数组一维数组 |416. 分割等和子集_第4张图片

在看其他情况。

状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。

dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。

当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。

代码初始化如下:

for (int j = 0 ; j < weight[0]; j++) {  // 当然这一步,如果把dp数组预先初始化为0了,这一步就可以省略,但很多同学应该没有想清楚这一点。
    dp[0][j] = 0;
}
// 正序遍历
for (int j = weight[0]; j <= bagweight; j++) {
    dp[0][j] = value[0];
}

此时dp数组初始化情况如图所示:

代码随想录算法训练营day42 | 动态规划 背包问题 01背包 二维数组一维数组 |416. 分割等和子集_第5张图片

dp[0][j]dp[i][0] 都已经初始化了,那么其他下标应该初始化多少呢?

其实从递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出dp[i][j] 是由左上方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。

初始-1,初始-2,初始100,都可以!

但只不过一开始就统一把dp数组统一初始为0,更方便一些。

如图:

代码随想录算法训练营day42 | 动态规划 背包问题 01背包 二维数组一维数组 |416. 分割等和子集_第6张图片

最后初始化代码如下:

int[] weight = {1,3,4};
int[] value = {15,20,30};
int bagSize = 4;


// 创建dp数组
        int goods = weight.length;  // 获取物品的数量
        int[][] dp = new int[goods][bagSize + 1];
// 初始化dp数组
        // 创建数组后,其中默认的值就是0
        for (int j = weight[0]; j <= bagSize; j++) {
            dp[0][j] = value[0];
        }

4.确定遍历顺序

在如下图中,可以看出,有两个遍历的维度:物品与背包重量

代码随想录算法训练营day42 | 动态规划 背包问题 01背包 二维数组一维数组 |416. 分割等和子集_第7张图片

那么问题来了,先遍历 物品还是先遍历背包重量呢?

其实都可以!! 但是先遍历物品更好理解

那么我先给出先遍历物品,然后遍历背包重量的代码。

// 填充dp数组  weight数组的大小 就是物品个数
        for (int i = 1; i < weight.length; i++) {  // 遍历物品
            for (int j = 0; j <= bagSize; j++) {  // 遍历背包容量
                if (j < weight[i]) {
                    /**
                     * 当前背包的容量都没有当前物品i大的时候,是不放物品i的
                     * 那么前i-1个物品能放下的最大价值就是当前情况的最大价值
                     */
                    dp[i][j] = dp[i-1][j];
                } else {
                    /**
                     * 当前背包的容量可以放下物品i
                     * 那么此时分两种情况:
                     *    1、不放物品i
                     *    2、放物品i
                     * 比较这两种情况下,哪种背包中物品的最大价值最大
                     */
                    dp[i][j] = Math.max(dp[i-1][j] , dp[i-1][j-weight[i]] + value[i]);
                }
            }
        }

先遍历背包,再遍历物品,也是可以的!(注意我这里使用的二维dp数组)

例如这样:

// weight数组的大小 就是物品个数
for(int j = 0; j <= bagweight; j++) { // 遍历背包容量
    for(int i = 1; i < weight.size(); i++) { // 遍历物品
        if (j < weight[i]) dp[i][j] = dp[i - 1][j];
        else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
    }
}

为什么也是可以的呢?

要理解递归的本质和递推的方向

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 递归公式中可以看出dp[i][j]是靠dp[i-1][j]dp[i - 1][j - weight[i]]推导出来的。

dp[i-1][j]dp[i - 1][j - weight[i]] 都在dp[i][j]的左上角方向(包括正上方向),那么先遍历物品,再遍历背包的过程如图所示:

代码随想录算法训练营day42 | 动态规划 背包问题 01背包 二维数组一维数组 |416. 分割等和子集_第8张图片

再来看看先遍历背包,再遍历物品呢,如图:

代码随想录算法训练营day42 | 动态规划 背包问题 01背包 二维数组一维数组 |416. 分割等和子集_第9张图片

大家可以看出,虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角,根本不影响dp[i][j]公式的推导!

但先遍历物品再遍历背包这个顺序更好理解。

其实背包问题里,两个for循环的先后循序是非常有讲究的,理解遍历顺序其实比理解推导公式难多了

5.举例推导dp数组

来看一下对应的dp数组的数值,如图:

代码随想录算法训练营day42 | 动态规划 背包问题 01背包 二维数组一维数组 |416. 分割等和子集_第10张图片

最终结果就是dp[2][4]

建议大家此时自己在纸上推导一遍,看看dp数组里每一个数值是不是这样的。

做动态规划的题目,最好的过程就是自己在纸上举一个例子把对应的dp数组的数值推导一下,然后在动手写代码!

很多同学做dp题目,遇到各种问题,然后凭感觉东改改西改改,怎么改都不对,或者稀里糊涂就改过了。

主要就是自己没有动手推导一下dp数组的演变过程,如果推导明白了,代码写出来就算有问题,只要把dp数组打印出来,对比一下和自己推导的有什么差异,很快就可以发现问题了。

public class BagProblem {
    public static void main(String[] args) {
        int[] weight = {1,3,4};
        int[] value = {15,20,30};
        int bagSize = 4;
        testWeightBagProblem(weight,value,bagSize);
    }

    // 二维数组
public static void testWeightBagProblem(int[] weight, int[] value, int bagSize){
    int goods=weight.length;
    int dp[][] =new int[goods][bagSize+1];
    
    for(int j=weight[0];j<=bagSize;j++){
        dp[0][j]=value[0];
    }
    for(int i=1;i<goods;i++){
        for(int j=0;j<=bagSize;j++){
            if(j<weight[i]){
                dp[i][j]=dp[i-1][j];
            }else{
                dp[i][j]=Math.max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i]);
            }
        }
        
    }
    
    //打印dp数组
    for(int i=0;i<goods;i++){
        for(int j=0;j<=bagSize;j++){
            sout(dp[i][j]+“\t”);
        }
        sout("\n")
    }
背包理论基础(滚动数组)

把二维dp降为一维dp,一些录友当时还表示比较困惑。

那么我们通过01背包,来彻底讲一讲滚动数组!

接下来还是用如下这个例子来进行讲解

背包最大重量为4。

物品为:

重量 价值
物品0 1 15
物品1 3 20
物品2 4 30

问背包能背的物品最大价值是多少?

一维dp数组(滚动数组)

对于背包问题其实状态都是可以压缩的。

在使用二维数组的时候,递推公式:

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])

其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:

dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);

与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了,只用dp[j](一维数组,也可以理解是一个滚动数组)。

这就是滚动数组的由来,需要满足的条件是上一层可以重复利用,直接拷贝到当前层。

dp[i][j]里的i和j表达的是什么了,i是物品,j是背包容量。

dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。

动规五部曲分析如下:

1.确定dp数组的定义

在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

2.一维dp数组的递推公式

dp[j]为 容量为j的背包所背的最大价值,那么如何推导dp[j]呢?

dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。

dp[j - weight[i]] + value[i] 表示 容量为 j - 物品i重量 的背包 加上 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j])

此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值,

所以递归公式为:

dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

可以看出相对于二维dp数组的写法,就是把dp[i][j]中i的维度去掉了。

3.一维dp数组如何初始化

关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱

dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。

那么dp数组除了下标0的位置,初始为0,其他下标应该初始化多少呢?

看一下递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。

这样才能让dp数组在递归公式的过程中取的最大的价值,而不是被初始值覆盖了

那么我假设物品价值都是大于0的,所以dp数组初始化的时候,都初始为0就可以了。

4.一维dp数组遍历顺序

代码如下:

for(int i = 0; i < weight.size(); i++) { // 遍历物品
    for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
        dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
    }
}

这里大家发现和二维dp的写法中,遍历背包的顺序是不一样的!

二维dp遍历的时候,背包容量是从小到大,而一维dp遍历的时候,背包是从大到小。

为什么呢?

倒序遍历是为了保证物品i只被放入一次!。但如果一旦正序遍历了,那么物品0就会被重复加入多次!

举一个例子:物品0的重量weight[0] = 1,价值value[0] = 15

如果正序遍历

dp[1] = dp[1 - weight[0]] + value[0] = 15

dp[2] = dp[2 - weight[0]] + value[0] = 30

此时dp[2]就已经是30了,意味着物品0,被放入了两次,所以不能正序遍历。

为什么倒序遍历,就可以保证物品只放入一次呢?

倒序就是先算dp[2]

dp[2] = dp[2 - weight[0]] + value[0] = 15 (dp数组已经都初始化为0)

dp[1] = dp[1 - weight[0]] + value[0] = 15

所以从后往前循环,每次取得状态不会和之前取得状态重合,这样每种物品就只取一次了。

那么问题又来了,为什么二维dp数组历的时候不用倒序呢?

因为对于二维dp,dp[i][j]都是通过上一层即dp[i - 1][j]计算而来,本层的dp[i][j]并不会被覆盖!

再来看看两个嵌套for循环的顺序,代码中是先遍历物品嵌套遍历背包容量,那可不可以先遍历背包容量嵌套遍历物品呢?

不可以!

因为一维dp的写法,背包容量一定是要倒序遍历(原因上面已经讲了),如果遍历背包容量放在上一层,那么每个dp[j]就只会放入一个物品,即:背包里只放入了一个物品。

倒序遍历的原因是,本质上还是一个对二维数组的遍历,并且右下角的值依赖上一层左上角的值,因此需要保证左边的值仍然是上一层的,从右向左覆盖。

一维dp数组 要倒序遍历!且要先遍历物品再遍历背包

5.举例推导dp数组

一维dp,分别用物品0,物品1,物品2 来遍历背包,最终得到结果如下:

代码随想录算法训练营day42 | 动态规划 背包问题 01背包 二维数组一维数组 |416. 分割等和子集_第11张图片

public class BagProblem {
    public static void main(String[] args) {
        int[] weight = {1,3,4};
        int[] value = {15,20,30};
        int bagSize = 4;
        testWeightBagProblem(weight,value,bagSize);
    }

    // 二维数组
public static void testWeightBagProblem(int[] weight, int[] value, int bagSize){
    int goods=weight.length;
    int dp[] =new int[bagSize+1];
    
  
    for(int i=0;i<goods;i++){
        for(int j=bagSize;j>=weight[i];j--){
                dp[j]=Math.max(dp[j],dp[j-weight[i]]+value[i]);
            }
        }
        
    }
    
    //打印dp数组
        for(int j=0;j<=bagSize;j++){
            sout(dp[j]+“\”);
        }
    }

可以看出,一维dp 的01背包,要比二维简洁的多! 初始化 和 遍历顺序相对简单了。

所以我倾向于使用一维dp数组的写法,比较直观简洁,而且空间复杂度还降了一个数量级!

在后面背包问题的讲解中,我都直接使用一维dp数组来进行推导

  • 总结

以上的讲解可以开发一道面试题目(毕竟力扣上没原题)。

就是本文中的题目,要求先实现一个纯二维的01背包,如果写出来了,然后再问为什么两个for循环的嵌套顺序这么写?反过来写行不行?再讲一讲初始化的逻辑。

然后要求实现一个一维数组的01背包,最后再问,一维数组的01背包,两个for循环的顺序反过来写行不行?为什么?

注意以上问题都是在候选人把代码写出来的情况下才问的。

就是纯01背包的题目,都不用考01背包应用类的题目就可以看出候选人对算法的理解程度了。

相信大家读完这篇文章,应该对以上问题都有了答案!

416. 分割等和子集

力扣题目链接

给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

注意: 每个数组中的元素不会超过 100 数组的大小不会超过 200

示例 1:

  • 输入: [1, 5, 11, 5]
  • 输出: true
  • 解释: 数组可以分割成 [1, 5, 5] 和 [11].

示例 2:

  • 输入: [1, 2, 3, 5]
  • 输出: false
  • 解释: 数组不能分割成两个元素和相等的子集.

提示:

  • 1 <= nums.length <= 200

  • 1 <= nums[i] <= 100

  • 思路

这道题目初步看,和如下两题几乎是一样的,大家可以用回溯法,解决如下两题

  • 698.划分为k个相等的子集
  • 473.火柴拼正方形

这道题目是要找是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

那么只要找到集合里能够出现 sum / 2 的子集总和,就算是可以分割成两个相同元素和子集了。

本题是可以用回溯暴力搜索出所有答案的,但最后超时了,也不想再优化了,放弃回溯,直接上01背包吧。

  • 01背包问题

背包问题,大家都知道,有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

要注意题目描述中商品是不是可以重复放入。

即一个商品如果可以重复多次放入是完全背包,而只能放入一次是01背包,写法还是不一样的。要明确本题中我们要使用的是01背包,因为元素我们只能用一次。

回归主题:首先,本题要求集合里能否出现总和为 sum / 2 的子集。

那么来一一对应一下本题,看看背包问题如何来解决。

只有确定了如下四点,才能把01背包问题套到本题上来。

  • 背包的体积为sum / 2
  • 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入。

以上分析完,我们就可以套用01背包,来解决这个问题了。

动规五部曲分析如下:

1.确定dp数组以及下标的含义

01背包中,dp[j] 表示: 容量为j的背包,所背的物品价值最大可以为dp[j]。

本题中每一个元素的数值既是重量,也是价值。重量和价值是一样的

套到本题,dp[j]表示 背包总容量(所能装的总重量)是j,放进物品后,背的最大重量为dp[j]

那么如果背包容量为target, dp[target]就是装满 背包之后的重量,所以 当 dp[target] == target 的时候,背包就装满了。

2.确定递推公式

01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。

所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);

3,dp数组如何初始化

在01背包,一维dp如何初始化,已经讲过,

从dp[j]的定义来看,首先dp[0]一定是0。

如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。

这样才能让dp数组在递推的过程中取得最大的价值,而不是被初始值覆盖了

本题题目中 只包含正整数的非空数组,所以非0下标的元素初始化为0就可以了。

代码如下:

int[] dp=new int[target+1];

4,确定遍历顺序

如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!

代码如下:

        for(int i=0;i<nums.length;i++){
            for(int j=target;j>=nums[i];j--){
                dp[j]=Math.max(dp[j],dp[j-nums[i]]+nums[i]);
            }
        }

5.举例推导dp数组

dp[j]的数值一定是小于等于j的。

如果dp[j] == j 说明,集合中的子集总和正好可以凑成总和j,理解这一点很重要。

用例1,输入[1,5,11,5] 为例,如图:

代码随想录算法训练营day42 | 动态规划 背包问题 01背包 二维数组一维数组 |416. 分割等和子集_第12张图片

最后dp[11] == 11,说明可以将这个数组分割成两个子集,使得两个子集的元素和相等。

综上分析完毕,代码如下:

class Solution {
    public boolean canPartition(int[] nums) {
        int sum=0;
        for(int num:nums){
            sum+=num;
        }
        if(sum%2!=0) return false;
        int target=sum/2;
        int[] dp=new int[target+1];
        for(int i=0;i<nums.length;i++){
            for(int j=target;j>=nums[i];j--){
                dp[j]=Math.max(dp[j],dp[j-nums[i]]+nums[i]);
            }
        }
        return dp[target]==target;
    }
}
  • 时间复杂度:O(n^2)

  • 空间复杂度:O(n),虽然dp数组大小为一个常数,但是大常数

  • 总结

这道题目就是一道01背包应用类的题目,需要我们拆解题目,然后套入01背包的场景。

01背包相对于本题,主要要理解,题目中物品是nums[i],重量是nums[i],价值也是nums[i],背包体积是sum/2。

看代码的话,就可以发现,基本就是按照01背包的写法来的。

你可能感兴趣的:(算法,动态规划,leetcode,java)