- MapReduce01:基本原理和wordCount代码实现
冬至喵喵
大数据mapreduce
本篇文章中,笔者记录了自己对于MapReduce的肤浅理解,参考资料主要包括《大数据Hadoop3.X分布式处理实战》和网络视频课程。下文介绍了MapReduce的基本概念、运行逻辑以及在wordCount代码示例。一、MapReduce概述1.概述google为解决其搜索引擎中的大规模网页数据的并行化处理问题,设计了MapReduce,在发明MapReduce之后首先用其重新改写了搜索引擎中we
- 知识积累----空转转录因子TF活性的计算框架
追风少年ii
空间数据分析hotspot傅里叶变换机器学习
作者,EvilGenius关于我们外显子的分析课程,我们来一次预报名吧,课表如下第一节:外显子分析基础知识与框架(包括基础文件的格式等)第二节:fastq数据处理到callSNV+基础认知(简单判断谱系突变和体系突变、以及GT:AD:AF:DP等基础信息)第三节(可能需要拆分成2节课):各大数据库如何注释突变信息(clinvar、cosmic、gnomad、HGMD、hotspot、oncoKB、
- 大数据项目-Django基于大数据技术实现的农产品销售系统
IT实战课堂-玲琳娜
计算机毕业设计大数据javaspark爬虫
《[含文档+PPT+源码等]Django基于大数据技术实现的农产品销售系统》该项目含有源码、文档、PPT、配套开发软件、软件安装教程、包运行成功以及课程答疑与微信售后交流群、送查重系统不限次数免费查重等福利!数据库管理工具:phpstudy/Navicat或者phpstudy/sqlyog后台管理系统涉及技术:后台使用框架:Django前端使用技术:Vue,HTML5,CSS3、JavaScrip
- JVM调优实战 Day 14 :大数据处理中的JVM调优
在未来等你
JVM调优实战JVMJava性能优化调优虚拟机
【JVM调优实战Day14】大数据处理中的JVM调优文章标签jvm调优,大数据处理,Java性能优化,JVM参数配置,JVMGC调优,Java开发,大数据架构,Jvm实战文章简述在大数据处理场景中,Java应用通常面临内存占用高、GC频率频繁、堆内存不足等挑战。本文作为“JVM调优实战”系列的第14天,深入探讨了大数据处理中的JVM调优策略。文章从概念解析、技术原理、常见问题、诊断方法、调优策略到
- 鸿蒙开发必备技能:六种数据存储方式全解析+实战代码
harmonyos
摘要在当前多设备互联的时代,移动端应用不再局限于单一设备,而是需要在多个终端上保持状态一致、数据同步与持久管理。鸿蒙系统提供了多种数据存储机制,从轻量级状态存储到复杂的数据持久化方案,满足不同场景下的需求。本文将结合实战案例,深入讲解鸿蒙系统中的六大数据存储方式,并配有可运行的代码,帮助开发者快速掌握数据管理方法。引言随着鸿蒙系统的不断发展,越来越多的开发者开始构建面向多设备、多用户、多场景的智能
- IT 行业深度洞察:从技术革命到产业重构的全景图谱
XQR.小白
重构
摘要本文系统梳理IT行业的发展脉络,深入剖析云计算、人工智能、大数据、物联网等核心技术的演进逻辑与协同效应,揭示IT产业在数字化转型浪潮中的生态重构与价值创造。通过典型案例分析与数据支撑,探讨行业面临的技术挑战、伦理困境与全球化竞争格局,展望IT技术如何持续驱动社会变革与产业升级。全文结合2025年最新技术动态与市场趋势,为从业者、投资者与研究者提供兼具理论深度与实践指导的行业参考。目录摘要一、I
- Spark从入门到熟悉(篇三)
小新学习屋
数据分析spark大数据分布式
本文介绍Spark的DataFrame、SparkSQL,并进行SparkSQL实战,加强对编程的理解,实现快速入手知识脉络包含如下7部分内容:RDD和DataFrame、SparkSQL的对比创建DataFrameDataFrame保存成文件DataFrame的API交互DataFrame的SQL交互SparkSQL实战参考资料RDD和DataFrame、SparkSQL的对比RDD对比Data
- Python 爬虫实战:12306 订单记录爬取(登录态保持 + 订单数据可视化)
西攻城狮北
python爬虫信息可视化
引言在大数据驱动的今天,12306作为国内最重要的铁路出行平台,积累了海量的出行数据。对于广大用户而言,能够方便地查看和分析自己的出行订单记录,不仅有助于行程管理,还能为未来的出行规划提供有力参考。本文将详细讲解如何利用Python爬虫技术实现12306的模拟登录,爬取个人订单记录,并通过数据可视化技术直观展示出行情况。一、环境搭建与准备工作(一)Python环境配置确保本地已安装Python3.
- 大数据集群架构hadoop集群、Hbase集群、zookeeper、kafka、spark、flink、doris、dataeas(二)
争取不加班!
hadoophbasezookeeper大数据运维
zookeeper单节点部署wget-chttps://dlcdn.apache.org/zookeeper/zookeeper-3.8.4/apache-zookeeper-3.8.4-bin.tar.gz下载地址tarxfapache-zookeeper-3.8.4-bin.tar.gz-C/data/&&mv/data/apache-zookeeper-3.8.4-bin//data/zoo
- Redis 集群与分布式实现:从原理到实战
一切皆有迹可循
redisredis分布式数据库后端缓存
前言在大数据与高并发场景下,单节点Redis的容量与可用性已无法满足需求。Redis通过集群与分布式技术,实现了数据的分片存储与高可用部署,成为分布式系统的核心组件。本文将深入解析Redis集群的底层原理、架构模式与实战经验,结合代码示例与最佳实践,帮助开发者构建高性能、高可用的分布式缓存系统。一、集群基础架构与核心原理1.数据分片机制Redis集群采用哈希槽(HashSlot)实现数据分片,共有
- 输入hadoop version时,解决Cannot execute /home/hadoop/libexec/hadoop-config.sh.的方法
有奇妙能力吗
ubuntuhadoophdfslinux大数据分布式
在ubuntu用hadoopversion遇到了一个错误:Cannotexecute/home/hadoop/hadoop2.8/libexec/hadoop-config.sh.解决方法:在/etc/profile中找到了这个HADOOP_HOME全局变量,将其删除运行source/etc/profile输入vim.bashrc命令,在最后一行输入unsetHADOOP_HOMEsource.b
- 大数据未来发展的趋势与挑战
倒霉男孩
大数据
随着信息技术的飞速发展,大数据已经成为推动社会进步和产业变革的重要力量。从商业决策到医疗健康,从智慧城市到人工智能,大数据技术的应用无处不在。未来,随着5G、物联网(IoT)、人工智能(AI)等技术的深度融合,大数据的发展将迎来更广阔的空间,同时也面临诸多挑战。本文将探讨大数据未来的发展趋势、应用前景以及可能面临的问题。一、大数据未来的发展趋势数据量持续爆发式增长随着5G网络的普及和物联网设备的广
- 从0到1构建智能招聘数据引擎:基于 Python 的 BOSS直聘信息采集实战与反爬破解指南
程序员威哥
python开发语言
前言在大数据浪潮席卷的时代,招聘平台蕴藏着海量的岗位信息,揭示着行业走向、人才趋势、薪资结构等核心价值。BOSS直聘作为国内极具代表性的直招平台,其数据对职业分析、市场监测甚至智能推荐系统的构建都有着重要意义。本文将手把手带你打造一个高质量、抗封锁的Python爬虫系统,精准采集BOSS直聘网的岗位数据,并全面解析其中涉及的反爬机制识别、加密参数处理、数据提取与存储等高级技巧,助你在Web数据采集
- 大数据量下高并发同步的解决方案
大师兄啊
sql大数据量下高并发同步的解决方案
大数据量下高并发同步的讲解(不看,保证你后悔)对于我们开发的网站,如果网站的访问量非常大的话,那么我们就需要考虑相关的并发访问问题了。而并发问题是绝大部分的程序员头疼的问题,但话又说回来了,既然逃避不掉,那我们就坦然面对吧~今天就让我们一起来研究一下常见的并发和同步吧。为了更好的理解并发和同步,我们需要先明白两个重要的概念:同步和异步1、同步和异步的区别和联系所谓同步,可以理解为在执行完一个函数或
- DolphinScheduler 6 个高频 SQL 操作技巧
数据库
摘要:ApacheDolphinScheduler系列4-后台SQL经验分享关键词:大数据、数据质量、数据调度整体说明在调研了DolphinScheduler之后,在项目上实际使用了一段时间,有了一些后台SQL实际经验,分享如下。进入DolphinScheduler后台数据库,我这里使用的是MySQL数据库。以任务名称包含“ods_xf_act”的任务为例。一、修改任务组操作UPDATEt_ds_
- 微信小程序|流浪动物救助小程序的设计与实现
qq_469603589
微信小程序小程序微信小程序
作者主页:编程指南针作者简介:Java领域优质创作者、CSDN博客专家、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、腾讯课堂常驻讲师主要内容:Java项目、Python项目、前端项目、人工智能与大数据、简历模板、学习资料、面试题库、技术互助收藏点赞不迷路关注作者有好处文末获取源码项目编号:L-BS-XZBS-30一,环境介绍语言环境:Java:jdk1
- Hadoop、Spark、Flink 三大大数据处理框架的能力与应用场景
一、技术能力与应用场景对比产品能力特点应用场景Hadoop-基于MapReduce的批处理框架-HDFS分布式存储-容错性强、适合离线分析-作业调度使用YARN-日志离线分析-数据仓库存储-T+1报表分析-海量数据处理Spark-基于内存计算,速度快-支持批处理、流处理(StructuredStreaming)-支持SQL、ML、图计算等-支持多语言(Scala、Java、Python)-近实时处
- 基于uniapp微信小程+SpringBoot+Vue的流浪动物救助领养系统设计和实现(源码+论文+部署讲解等)
博主介绍:✌全网粉丝50W+,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等
- Vue3 中 Excel 导出的性能优化与实战指南
文章目录Vue3中Excel导出的性能优化与实战指南引言:为什么你的导出功能会卡死浏览器?一、前端导出方案深度剖析1.1xlsx(SheetJS)-轻量级冠军1.2exceljs-功能强大的重量级选手二、后端导出方案:大数据处理的救星2.1为什么大数据需要后端处理?2.2Node.js流式导出实战三、生产环境性能优化全攻略3.1内存优化技巧对比3.2用户体验优化方案四、决策流程图:帮你选择最佳方案
- 低代码数字孪生智慧钢厂组态监控界面
图扑可视化
三维可视化数字孪生数据大屏组态监控智慧钢厂
2024年4月,中国钢铁工业协会发布了《钢铁行业数字化转型评估报告(2023年)》(以下简称《报告》)。《报告》指出,绝大部分钢铁企业建立了数字化转型相关管理组织和团队,并加强其规划落实,系统间的综合集成能力进一步加强。在研发、制造、服务全生命周期管控以及产业链协同等方面需继续深化,这也是现阶段钢铁企业数字化转型需重点建设的内容。钢铁行业作为典型的流程制造业,通过融合先进的信息技术和大数据分析,既
- UI前端与大数据的深度融合:打造智慧应用的新生态
前端开发与ui设计的老司机
ui前端大数据
hello宝子们...我们是艾斯视觉擅长ui设计、前端开发、数字孪生、大数据、三维建模、三维动画10年+经验!希望我的分享能帮助到您!如需帮助可以评论关注私信我们一起探讨!致敬感谢感恩!在数字化转型的浪潮中,UI前端与大数据正逐渐成为推动智慧应用发展的核心力量。UI前端作为用户与应用程序交互的直接界面,负责提供直观、便捷且吸引人的用户体验;而大数据则凭借其强大的数据收集、分析和预测能力,为应用程序
- 数字孪生:未来城市管理的革命性技术
大有数据可视化
信息可视化
一、数字孪生技术概述数字孪生技术是一种通过创建虚拟模型与物理实体之间实时交互的技术。它借助物联网、大数据、云计算、人工智能等前沿技术,实现对物理实体的精准映射与动态仿真。数字孪生的核心在于构建一个与物理世界相对应的虚拟模型,该模型能够实时反映物理实体的状态,并通过数据分析与模拟优化其性能。在城市管理领域,数字孪生技术为城市管理者提供了一种全新的视角和工具。城市是一个复杂的巨系统,涉及基础设施、交通
- Python大数据分析&人工智能教程 - Django-Celery异步处理(深入解析与实战案例)
AI_DL_CODE
python数据分析DjangoCelery异步处理Celery
文章目录1.概念介绍1.1Django框架概述1.2Celery异步任务队列1.3AMQP协议与消息路由2.环境搭建2.1安装Django和Celery2.2配置Redis作为消息代理3.Celery架构与工作原理3.1Celery组件介绍3.2任务生命周期3.3任务调度与执行3.3.1定时任务3.3.2异步任务调用3.3.3任务结果查询4.Django与Celery集成4.1创建Celery实例
- Python大数据分析&人工智能教程 - Django-RestFramework框架(深入解析+实操案例)
AI_DL_CODE
python数据分析djangoRestFramework框架
文章目录1.Django-RestFramework基础1.1Django-RestFramework概述1.2安装与配置1.3构建第一个API1.3.1定义模型1.3.2创建序列化器1.3.3定义视图1.3.4配置URL路由1.4进阶功能1.4.1权限控制1.4.2限流1.5实战案例1.5.1创建图书1.5.2查询图书1.5.3更新图书1.5.4删除图书2.序列化器(Serializers)2.
- Hadoop WordCount 程序实现与执行指南
HadoopWordCount程序实现与执行指南下面是使用Python实现的HadoopWordCount程序,包含完整的Mapper和Reducer部分。这个程序可以在PyCharm中本地测试,也可以部署到远程Hadoop集群上运行。mapper.pyimportsys#从标准输入读取数据forlineinsys.stdin:#移除行首行尾的空白字符line=line.strip()#将行分割为
- 算法备案 | 算法备案必要性、算法类型、备案流程
极创信息
人工智能AIGC
一、进行算法备案的必要性在当今的数字化时代,算法已经广泛应用于各个行业,引起了监管部门的高度关注,因为算法产品可能会带来一些潜在的风险。为了规范互联网信息服务中的算法推荐活动,抵制诸如深度生成合成、算法歧视、“大数据杀熟”、诱导沉迷等不合理应用,各个国家都先后出台了一系列关于算法管理的法律法规。在我国,《数据安全法》、《个人信息保护法》、《互联网信息服务算法推荐管理规定》等法律法规明确对算法的使用
- 集装箱智慧通关系统如何用AI技术重塑物流效率?
在全球贸易和物流高速发展的今天,港口、物流园区及企业的闸口管理面临巨大挑战——如何提升通关效率、保障货物安全并降低运营成本?集装箱智慧通关系统依托先进的AI视觉识别、物联网及大数据技术,为行业提供了智能化解决方案。核心技术:AI视觉+物联网赋能传统闸口依赖人工核验集装箱号、车辆信息,效率低且易出错。而智慧通关系统通过高精度摄像头+AI算法,可自动识别集装箱编号、货车车牌、货物类型等关键信息,准确率
- 从单一设备到万物互联:鸿蒙生态崛起的未来之路
王子良.
经验分享harmonyos华为
目录一、引言:开启智能时代的钥匙二、鸿蒙生态概述:跨设备协同的核心价值三、开发者机遇与挑战:抓住鸿蒙崛起的机会四、鸿蒙生态崛起的前景:万物互联的未来五、开发者在鸿蒙生态中的实践机遇与挑战1.跨设备开发的机遇2.与人工智能和物联网结合的创新空间3.持续创新与生态完善的挑战六、鸿蒙生态未来的多维发展:智能硬件与大数据的深度结合1.智能硬件与大数据的结合2.在智能家居与城市管理中的应用3.行业领域的深度
- 遥感云大数据在灾害、水体与湿地领域典型案例实践及GPT模型应用
科研的力量
生态遥感双碳chatgptGEE卫星遥感数据
以EarthEngine(GEE)、PIE-Engine为代表全球尺度地球科学数据(尤其是卫星遥感数据)在线可视化计算和分析云平台应用越来越广泛。GEE平台存储和同步遥感领域目前常用的MODIS、Landsat和Sentinel等卫星影像、气候与天气、地球物理等方面的数据集超过80PB,同时依托全球上百万台超级服务器,提供足够的运算能力对这些数据进行处理。相比于ENVI等传统的遥感影像处理工具,G
- SeaTunnel 社区月报(5-6 月):全新功能上线、Bug 大扫除、Merge 之星是谁?
数据库
在5月和6月,SeaTunnel社区迎来了一轮密集更新:2.3.11正式发布,新增对Databend、Elasticsearch向量、HTTP批量写入、ClickHouse多表写入等多个连接器能力,全面提升了数据同步灵活性。同时,近100个修复与优化PR合入,涵盖Spark引擎并行性修复、Paimon精度兼容性增强、Mongo-CDCExactlyOnce默认值优化、OracleDDL类型支持补全
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla