资料来源于生信星球
今天的R包以dplyr为例
从昨天开始已经觉得有些吃力了,今天安装R包的时候硬生生的安装了好久,最后才安装成功,总之加油吧。
一、安装和加载R包
1、镜像设置
参考生信星球公众号文章
你还在每次配置Rstudio的下载镜像吗?
2、安装
R包安装命令install.packages(“包”)
或BiocManager::install(“包”)
取决于你要安装的包存在于CRAN网站还是Biocductor,存在于哪里?可以谷歌搜到。
3、加载
以下两个命令都可以
library(包)
require(包)
二、安装加载三部曲
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/")
install.packages("dplyr")
library(dplyr)
实例:test <- iris[c(1:2,51:52,101:102),]
三、dplyr五个基础函数
注:以下参数设置均来源于实例
1、mutate(),新增列
如:mutate(test, new = Sepal.Length * Sepal.Width)
2、select(),按列筛选
- 按列号删选
如:select(test,1)
select(test,c(1,5))
select(test,Sepal.Length)
- 按列名筛选
如:select(test, Petal.Length, Petal.Width)
vars <- c("Petal.Length", "Petal.Width") select(test, one_of(vars))
3、filter()筛选行
filter(test, Species == "setosa")
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
filter(test, Species == "setosa"&Sepal.Length > 5 )
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
filter(test, Species %in% c("setosa","versicolor"))
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 7.0 3.2 4.7 1.4 versicolor
## 4 6.4 3.2 4.5 1.5 versicolor
4、arrange(),按某1列或某几列对整个表格进行排序
arrange(test, Sepal.Length)#默认从小到大排序
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 4.9 3.0 1.4 0.2 setosa
## 2 5.1 3.5 1.4 0.2 setosa
## 3 5.8 2.7 5.1 1.9 virginica
## 4 6.3 3.3 6.0 2.5 virginica
## 5 6.4 3.2 4.5 1.5 versicolor
## 6 7.0 3.2 4.7 1.4 versicolor
arrange(test, desc(Sepal.Length))#用desc从大到小
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 7.0 3.2 4.7 1.4 versicolor
## 2 6.4 3.2 4.5 1.5 versicolor
## 3 6.3 3.3 6.0 2.5 virginica
## 4 5.8 2.7 5.1 1.9 virginica
## 5 5.1 3.5 1.4 0.2 setosa
## 6 4.9 3.0 1.4 0.2 setosa
5、summarise():汇总
对数据进行汇总操作,结合group_by使用实用性
summarise(test, mean(Sepal.Length), sd(Sepal.Length))# 计算Sepal.Length的平均值和标准差
## mean(Sepal.Length) sd(Sepal.Length)
## 1 5.916667 0.8084965
# 先按照Species分组,计算每组Sepal.Length的平均值和标准差
group_by(test, Species)
## # A tibble: 6 x 5
## # Groups: Species [3]
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## *
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3 1.4 0.2 setosa
## 3 7 3.2 4.7 1.4 versicolor
## 4 6.4 3.2 4.5 1.5 versicolor
## 5 6.3 3.3 6 2.5 virginica
## 6 5.8 2.7 5.1 1.9 virginica
summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))
## # A tibble: 3 x 3
## Species `mean(Sepal.Length)` `sd(Sepal.Length)`
##
## 1 setosa 5 0.141
## 2 versicolor 6.7 0.424
## 3 virginica 6.05 0.354
四、dplyr两个实用技能
1:管道操作 %>% (cmd/ctr + shift + M)
(加载任意一个tidyverse包即可用管道符号)
test %>%
group_by(Species) %>%
summarise(mean(Sepal.Length), sd(Sepal.Length))
## # A tibble: 3 x 3
## Species `mean(Sepal.Length)` `sd(Sepal.Length)`
##
## 1 setosa 5 0.141
## 2 versicolor 6.7 0.424
## 3 virginica 6.05 0.354
2:count统计某列的unique值
count(test,Species)
## # A tibble: 3 x 2
## Species n
##
## 1 setosa 2
## 2 versicolor 2
## 3 virginica 2
五、dplyr处理关系数据
即将2个表进行连接,注意:不要引入factor
options(stringsAsFactors = F)
test1 <- data.frame(x = c('b','e','f','x'),
z = c("A","B","C",'D'),
stringsAsFactors = F)
test1
## x z
## 1 b A
## 2 e B
## 3 f C
## 4 x D
test2 <- data.frame(x = c('a','b','c','d','e','f'),
y = c(1,2,3,4,5,6),
stringsAsFactors = F)
test2
## x y
## 1 a 1
## 2 b 2
## 3 c 3
## 4 d 4
## 5 e 5
## 6 f 6
1.內连inner_join,取交集
inner_join(test1, test2, by = "x")
## x z y
## 1 b A 2
## 2 e B 5
## 3 f C 6
2.左连left_join
left_join(test1, test2, by = 'x')
## x z y
## 1 b A 2
## 2 e B 5
## 3 f C 6
## 4 x D NA
left_join(test2, test1, by = 'x')
## x y z
## 1 a 1
## 2 b 2 A
## 3 c 3
## 4 d 4
## 5 e 5 B
## 6 f 6 C
3.全连full_join
full_join( test1, test2, by = 'x')
## x z y
## 1 b A 2
## 2 e B 5
## 3 f C 6
## 4 x D NA
## 5 a
## 6 c
## 7 d
4.半连接:返回能够与y表匹配的x表所有记录semi_join
semi_join(x = test1, y = test2, by = 'x')
## x z
## 1 b A
## 2 e B
## 3 f C
5.反连接:返回无法与y表匹配的x表的所记录anti_join
anti_join(x = test2, y = test1, by = 'x')
## x y
## 1 a 1
## 2 c 3
## 3 d 4
6.简单合并
在相当于base包里的cbind()函数和rbind()函数;
注意,bind_rows()函数需要两个表格列数相同,而bind_cols()函数则需要两个数据框有相同的行数
test1 <- data.frame(x = c(1,2,3,4), y = c(10,20,30,40))
test1
## x y
## 1 1 10
## 2 2 20
## 3 3 30
## 4 4 40
test2 <- data.frame(x = c(5,6), y = c(50,60))
test2
## x y
## 1 5 50
## 2 6 60
test3 <- data.frame(z = c(100,200,300,400))
test3
## z
## 1 100
## 2 200
## 3 300
## 4 400
bind_rows(test1, test2)
## x y
## 1 1 10
## 2 2 20
## 3 3 30
## 4 4 40
## 5 5 50
## 6 6 60
bind_cols(test1, test3)
## x y z
## 1 1 10 100
## 2 2 20 200
## 3 3 30 300
## 4 4 40 400