- 【数学建模】熵权法
烟锁池塘柳0
数学建模数学建模算法
熵权法介绍熵权法是一种常用的用于多指标决策问题中的权重确定方法,它通过对决策矩阵的熵值进行计算,来自动地评估各个指标的权重。熵值能够反映各个指标的不确定性,熵值越小,表明该指标的信息量越大,反之亦然。熵权法可以避免人为设定权重的问题,通过熵权法确定的权重是一个客观量,只和数据本身的性质有关。熵权法在多目标优化问题中具有广泛的应用。文章目录熵权法介绍1.熵权法的基本原理2.熵权法步骤步骤1:标准化决
- 视频剪辑行业的现状与进阶之路:一个双视角分析
程序员
视频剪辑行业的现状与进阶之路:一个双视角分析一、现状解析商业角度分析成本控制培训需要投入时间和人力成本快节奏的市场环境要求快速产出人员流动性大,培训投入可能无法获得长期回报市场需求大量内容需要快速产出标准化的剪辑模板更容易管理追求效率大于创新风险规避现成模板降低出错风险统一风格便于品控减少个人风格带来的不确定性剪辑师角度分析职业发展受限难以系统学习完整工作流程创意空间被压缩技能提升遇到瓶颈技能断层
- 人工智能之数学基础:数学对人工智能技术发展的作用
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能深度学习机器学习神经网络自然语言处理数学
本文重点数学是人工智能技术发展的基础,它提供了人工智能技术所需的数学理论和算法,包括概率论、统计学、线性代数、微积分、图论等等。本文将从以下几个方面探讨数学对人工智能技术发展的作用。概率论和统计学概率论和统计学是人工智能技术中最为重要的数学分支之一。概率论和统计学的应用范围非常广泛,包括机器学习、数据挖掘、自然语言处理、计算机视觉等领域。在人工智能技术中,概率论和统计学主要用于处理不确定性的问题,
- 【数学建模】灰色关联分析模型详解与应用
烟锁池塘柳0
数学建模数学建模算法
灰色关联分析模型详解与应用文章目录灰色关联分析模型详解与应用引言灰色系统理论简介灰色关联分析基本原理灰色关联分析计算步骤1.确定分析序列2.数据无量纲化处理3.计算关联系数4.计算关联度灰色关联分析应用实例实例:某企业生产效率影响因素分析灰色关联分析在各领域的应用灰色关联分析的Python实现灰色关联分析的局限性结论引言在数据分析领域,我们经常面临样本量少、信息不完全、数据不确定性高的情况。传统的
- 获取网站流量的方法有哪些?
liuliangpuzi
互联网流量运营数据搜索引擎百度大数据
不同流量源的比例反映了网站所有者不同的管理策略和网站的发展阶段。那么,网站流量来源都有哪些?接下来小编就跟大家浅析下网站流量来源的三大途径,一起来看看吧!1、直接访问来源搜索引擎源和外部链源依赖于外部,因此通常存在较大的不确定性,如搜索引擎算法调整、业务模型调整、策略监管等,这可能会使网站的流量从每天数十万IP急剧下降到数千。对于小型商业站来说,从搜索引擎获取流量是一种更经济实惠、廉价的选择,但对
- LoRA中黑塞矩阵、Fisher信息矩阵是什么
ZhangJiQun&MXP
教学2021论文2024大模型以及算力矩阵机器学习人工智能transformer深度学习算法线性代数
LoRA中黑塞矩阵、Fisher信息矩阵是什么1.三者的核心概念黑塞矩阵(Hessian)二阶导数矩阵,用于优化问题中判断函数的凸性(如牛顿法),或计算参数更新方向(如拟牛顿法)。Fisher信息矩阵(FisherInformationMatrix,FIM)统计学中衡量参数估计的不确定性,反映数据中包含的关于参数的信息量。在机器学习中常用于自然梯度下降(NaturalGradientDescent
- Tsfresh + TA-Lib + LightGBM :A 股市场量化投资策略实战入门
船长@Quant
Python金融科技pythontsfreshTA-LibLightGBM量化技术策略开发
Tsfresh+TA-Lib+LightGBM:A股市场量化投资策略实战入门本项目以A股市场为研究对象,通过量化技术对市场数据进行分析,构建量化投资策略,并利用历史数据回测验证策略的有效性。项目旨在为量化技术初学者提供一个系统的学习框架,帮助读者掌握从数据获取到策略评估的全流程操作。文中内容仅限技术学习与代码实践参考,市场存在不确定性,技术分析需谨慎验证,不构成任何投资建议。适合量化新手建立系统认
- 市场波动中的风险管理与策略优化
Q3990385023
区块链
市场波动中的风险管理与策略优化在市场交易中,价格的波动性为投资者提供了交易机会,但同时也带来了风险。如何在市场不确定性中进行有效的风险管理,并优化交易策略,是每位交易者都需要思考的问题。本文将探讨市场波动的影响因素、如何通过合理的资金管理降低风险,以及如何利用数据分析提升交易稳定性。一、市场波动的核心影响因素1.供需关系变化市场价格的波动主要受到供需关系的影响。无论是受宏观经济政策影响,还是市场预
- 如何优化公司需求管理
需求管理
管理需求变更的关键在于明确流程、跨部门协同、数据驱动反馈。其中,明确流程要求在项目初期建立一套标准化的变更管理制度;跨部门协同确保各部门对需求变更有统一理解并共同参与决策;数据驱动反馈通过实时数据和用户反馈不断优化变更策略,从而保证产品始终紧跟市场需求。一、需求变更管理的重要性与基本理念需求变更管理是软件开发和产品创新过程中必不可少的组成部分。需求在项目启动时往往是初步、模糊且充满不确定性的,而随
- 如何优化公司需求管理
需求管理
管理需求变更的关键在于明确流程、跨部门协同、数据驱动反馈。其中,明确流程要求在项目初期建立一套标准化的变更管理制度;跨部门协同确保各部门对需求变更有统一理解并共同参与决策;数据驱动反馈通过实时数据和用户反馈不断优化变更策略,从而保证产品始终紧跟市场需求。一、需求变更管理的重要性与基本理念需求变更管理是软件开发和产品创新过程中必不可少的组成部分。需求在项目启动时往往是初步、模糊且充满不确定性的,而随
- 微服务架构中10个常用的设计模式
微服务
在当今的微服务架构中,常见的十种设计模式,分别是服务发现模式、API网关模式、断路器模式、边车模式、负载均衡模式、Saga事务模式、CQRS模式、分片模式、分布式日志跟踪模式、熔断与降级模式。其中,服务发现模式十分关键,通过自动化发现和定位服务,减少人工配置带来的不确定性,让系统可扩展性与高可用性得以更好地保障。同时,这一模式还能有效降低运维难度,在服务数量急剧增加的情况下依然保持灵活管理,提高线
- 二值逻辑、三值逻辑到多值逻辑的变迁(含示例)
搏博
人工智能原理算法人工智能机器学习线性代数图像处理数据分析
二值逻辑、三值逻辑到多值逻辑的变迁是一个逻辑体系不断拓展和深化的过程,反映了人们对复杂现象和不确定性问题认识的逐步深入。前文,我们已经探讨过命题逻辑与谓词逻辑,了解了如何用符号语言从浅入深地刻画现实世界。具体可以看我的CSDN文章:人工智能的数学基础之命题逻辑与谓词逻辑(含示例)-CSDN博客人工智能中用到的逻辑可概括地划分为两大类。第一类是经典命题逻辑和一阶谓词逻辑,第二类是泛指除经典逻辑之外的
- 智能体群体决策在投资组合风险控制中的应用
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能人工智能物联网大数据ai
1.1引言1.1.1投资组合风险控制的重要性投资组合风险控制是金融领域中至关重要的一环。在市场波动和不确定性加剧的背景下,投资者面临着诸多风险,如市场风险、信用风险、流动性风险等。有效的投资组合风险控制能够帮助投资者降低风险、保持资产价值稳定,从而实现长期投资目标。投资组合风险控制的重要性体现在以下几个方面:降低风险:通过分散投资、优化资产配置等方式,减少单一资产的市场波动对整个投资组合的影响,降
- 软件或互联网项目中的风险管理怎么做
项目管理
软件或互联网项目中的风险管理的核心在于全面识别风险、科学评估风险、动态监控调整。其中,全面识别风险要求项目团队在项目启动前就系统地调查内外部可能影响项目进度、质量、成本及用户体验的各类风险;科学评估风险则需要借助定性与定量相结合的方法,将风险发生的概率与影响程度转化为具体数据,为风险优先级排序提供依据;动态监控调整强调在项目执行过程中实时追踪风险变化,及时启动应急预案,从而确保项目在面对不确定性时
- 克服 AI 时代的恐惧、不确定性和疑虑
人工智能
1学习咋通过培养AI技能,提高职场对AI的积极性职场中抵触AI的现象确实存在。很多人并非不愿意接受变化,而是因为对AI存在“FUD”——即恐惧(Fear)、不确定性(Uncertainty)和疑虑(Doubt)。要在AI转型时代取得成功,必须积极应对这些FUD,并营造一种支持学习的文化,让员工能够适应和成长,最终推动整个组织共同进步。大厂们都始终在内部率先使用和测试自家的AI技术,然后才推向客户。
- 数据分享|1961-2017年中国0.25°×0.25° 逐日地表水文数据集(VIC-CN05.1)
JGiser
GIS数据未分类(气象等等)arcgis
缺乏长期高精度的地表观测给我国水文气象研究带来了很大的不确定性。本数据基于陆面水文模式(VICv4.2.d,VariableInfiltrationCapacitymodel)模拟构建了中国1961~2017年0.25°×0.25°逐日地表水文数据集(VIC-CN05.1)。大气驱动场(降水、温度和风速)来自基于中国2400多个站点观测资料插值而成的0.25°×0.25°逐日气象数据集(CN05.
- 数学建模与优化算法在确定X和Y值时,如何处理实验数据的不确定性?
学术乙方
油纸绝缘算法经验分享
在数学建模与优化算法中处理实验数据的不确定性以确定油纸绝缘系统中的X和Y值,可以参考以下方法和步骤:建立数学模型油纸绝缘系统的几何结构可以用X-Y模型来描述,其中X表示挡板厚度与总厚度的比值,Y表示间隔器宽度与总宽度的比值。这些参数直接影响油纸绝缘的介电特性。通过实验数据(如介电谱曲线)和理论模型,可以建立数学方程来描述X和Y对介电特性的影响。引入不确定性建模实验数据通常存在测量误差、环境变化等因
- spring mvc实现自定义验证器Validator
罗汉爷
#玩转Springspringmvcjava自定义Validator
使用场景在接口开发的日常实践中,确保数据准确性是保障业务稳定性的关键一环。面对诸如登录时验证用户名密码非空、创建用户时检查邮箱和手机号格式的正确性等需求,手动编写校验逻辑不仅耗时费力,还会显著降低代码的可读性和维护性。鉴于网络环境的不确定性及前端数据易遭篡改的特性,后端实施严格的参数校验变得尤为关键,以确保存储和处理的数据在逻辑上的无懈可击。Validator介绍Validator框架凭借其遵循的
- 关于无感方波启动预定位阶段
蓑衣客VS索尼克
个人总结经验分享单片机学习
一、预定位的核心目标与原理消除启动不确定性无位置传感器下,转子初始位置未知,直接换相可能导致反转或失步。预定位通过施加固定方向磁场,强制转子对齐至预定角度(通常0°或60°电角度),建立初始位置基准。电磁转矩平衡原理短时施加定子电流矢量,利用磁阻转矩与永磁转矩的相互作用,使转子克服静摩擦阻力,稳定至低磁阻位置。典型电流施加时间为50-200ms,电流幅值需根据电机负载惯量调整。二、经典预定位方法及
- 大模型不确定性量化与提示词校准
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
大模型不确定性量化与提示词校准关键词大模型不确定性量化提示词校准自然语言处理计算机视觉推荐系统摘要本文旨在探讨大模型不确定性量化与提示词校准这一前沿技术。首先,我们将介绍大模型不确定性的背景及其重要性,然后深入探讨不确定性量化的原理和方法,以及提示词校准在其中的作用。通过具体案例分析,我们将展示这些技术在自然语言处理、计算机视觉和推荐系统等领域的应用。最后,我们将讨论实现大模型不确定性量化与提示词
- 期权有哪些用处?期权和期货比优势在哪?
财财有个期权懂
金融财经
期权如同金融市场的“瑞士军刀”,既能防御风险,又能主动出击。相较于期货的“刚性对决”,期权更像“柔性博弈”——通过策略组合在不确定性中捕捉确定性收益。期权有哪些用处?期权的核心价值在于其非对称性——买方风险有限,收益潜力无限;卖方收益有限,风险可能无限。这种特性让期权在实际应用中展现出四大核心用途:首先是风险管理能力:黑天鹅事件的“保险单”老板们可以利用期权对冲股票下跌,比如持有100万元股票组合
- Python 机器学习 基础 之 模型评估与改进 【评估指标与评分】的简单说明
仙魁XAN
Python机器学习基础+实战案例python机器学习模型评估与改进评估指标与评分召回率
Python机器学习基础之模型评估与改进【评估指标与评分】的简单说明目录Python机器学习基础之模型评估与改进【评估指标与评分】的简单说明一、简单介绍二、评估指标与评分1、牢记最终目标2、二分类指标1)错误类型2)不平衡数据集3)混淆矩阵4)考虑不确定性5)准确率-召回率曲线6)受试者工作特征(ROC)与AUC3、多分类指标4、回归指标5、在模型选择中使用评估指标附录一、参考文献一、简单介绍Py
- Search-o1:智体搜索增强的大型推理模型
三谷秋水
机器学习大模型人工智能人工智能深度学习机器学习
25年1月来自人大和清华的论文“Search-o1:AgenticSearch-EnhancedLargeReasoningModels”。大型推理模型(LRM)(例如OpenAI-o1)已通过大规模强化学习展示长步推理能力。然而,它们的扩展推理过程通常会受到知识不足的影响,从而导致频繁出现不确定性和潜在错误。为了解决这一限制,引入Search-o1,这是一个使用智体检索增强生成(RAG)机制和用
- 【心声树洞】
许科大
笔记
20250304周二阴16:25我决定开一篇文章专门记录一些想要记录下来的心声。由于这边的好处是可以无限编辑,为避免搞不清时间,每次更新自觉加上时间,似乎这样可能会好一些。发现好喜欢加一些不确定性的修饰语,大概是本人本就是不自信的个体。我真的好不喜欢学习英语。我真的好不喜欢部署环境,菜鸡的我部署一个python环境花了两天时间唉呀呀呀呀,还熬了个大夜,熬到凌晨三点多。同志啊效率堪忧,亟待提升啊。不
- 如何评估测试团队的绩效?
blues_C
软件测试&项目管理测试工具功能测试软件测试
测试团队的绩效评估目的一、软件测试工程师职责二、测试的不确定性三、考核内容四、绩效评估的误区五、绩效评估模板六、绩效评估等级与激励方式目的绩效评估不仅仅是为了衡量团队的工作成果,更重要的是通过评估找到改进点,提升团队的整体效率和质量。其主要目的如下:激励团队成员:通过公正的绩效评估,激励团队成员努力工作,提升个人和团队的工作绩效。发现问题:通过绩效评估,发现团队在工作过程中存在的问题,及时采取措施
- 强化学习是否能够在完全不确定的环境中找到一个合理的策略,还是说它只能在已知规则下生效?
concisedistinct
人工智能人工智能强化学习
强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,广泛应用于机器人控制、自动驾驶、游戏策略和金融决策等领域。其核心理念是通过与环境的互动,不断学习如何选择最优行动以最大化累积奖励。尽管强化学习在许多已知和相对确定的环境中表现出色,但在面对完全不确定或动态变化的环境时,其表现和可靠性是否依然能保持一致是一个值得深入探讨的问题。我们生活的世界充满了不确定性,尤其是在
- 第一讲 信息化发展
Jerry.张蒙
数字化转型大数据云原生人工智能区块链信息与通信云计算自动化
本文是本人在学习信息系统项目管理期间,梳理的笔记,方便后续复习。1、综述项目内容项目内容信息与信息化信息数字中国数字经济信息系统数字政府信息化数字社会现代化基础设施新型基础设施建设数字生态工业互联网数字化转型与元宇宙数字化转型车联网元宇宙现代化创新发展农业农村现代化两化融合与智能制造消费互联网2、信息与信息化1)信息概念:是一种客观事物,能够用来消除不确定性。信息量单位:比特(bit)2)信息的1
- 【系列专栏】银行信息系统研发风险管控-工作方法 07
静语金科媛
银行科技笔记银行研发风险
银行信息系统研发风险管控(工作方法)在金融行业加速数字化转型的当下,银行信息系统的研发成为关乎业务发展与稳定运营的核心任务。然而,研发过程充满不确定性,风险管控至关重要。运用科学、系统的工作方法,是银行有效识别、评估、应对和监控研发风险,确保信息系统安全、高效、可靠上线的关键。精准识别风险,夯实管控基础头脑风暴,激发群体智慧风险识别作为风险管控的第一步,需要全面且细致。头脑风暴法是行之有效的手段之
- 未来至少十年时间里,哪些行业的岗位更有发展前景且很难被人工智能替代?
向贤
人工智能人工智能
未来至少十年时间里,哪些行业的岗位更有发展前景且很难被人工智能替代?在人工智能技术快速迭代的背景下,未来十年内,以下六大类行业因其对人类独特能力的依赖,将展现出强大的抗替代性,并成为具有长期发展潜力的领域:一、医疗健康行业:生命科学与人文关怀的交织复杂决策与不确定性应对医学诊断需要结合患者个体差异、病史和社会背景进行综合判断,AI虽能辅助影像识别和数据分析,但面对突发并发症或罕见病例时,医生的临床
- 需求不明确、没有列基准计划的项目,如何管理项目过程及进度
项目
在项目管理中,需求不明确、没有基准计划是常见但又极具挑战性的情境。面对这种情况,项目经理必须采取灵活的管理方式,依赖经验判断、团队协作和适当的工具来应对不确定性。首先,通过持续沟通和需求梳理,可以在项目进行过程中逐步明确需求,避免大规模的需求变更;其次,即便没有正式的基准计划,仍可以通过设定临时里程碑、进行小范围的迭代和灵活的进度追踪来管理项目进度。本文将结合实际经验,详细探讨如何在这些不确定的环
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_