高效解决接雨水问题

 引入

42. 接雨水 - 力扣(LeetCode)

高效解决接雨水问题_第1张图片

下面就来由浅入深介绍暴力解法 -> 备忘录解法 -> 双指针解法,在 O(N) 时间 O(1) 空间内解决这个问题。

核心思路

所以对于这种问题,我们不要想整体,而应该去想局部;就像之前的文章写的动态规划问题处理字符串问题,不要考虑如何处理整个字符串,而是去思考应该如何处理每一个字符。

这么一想,可以发现这道题的思路其实很简单。具体来说,仅仅对于位置 `i`,能装下多少水呢?

高效解决接雨水问题_第2张图片

能装 2 格水,因为 `height[i]` 的高度为 0,而这里最多能盛 2 格水,2-0=2。

为什么位置 `i` 最多能盛 2 格水呢?因为,位置 `i` 能达到的水柱高度和其左边的最高柱子、右边的最高柱子有关,我们分别称这两个柱子高度为 `l_max` 和 `r_max`;位置 i 最大的水柱高度就是 `min(l_max, r_max)`

更进一步,对于位置 `i`,能够装的水为

water[i] = min(
               # 左边最高的柱子
               max(height[0..i]),  
               # 右边最高的柱子
               max(height[i..end]) 
            ) - height[i]

高效解决接雨水问题_第3张图片

高效解决接雨水问题_第4张图片

这就是本问题的核心思路,我们可以简单写一个暴力算法:

int trap(int[] height) {
    int n = height.length;
    int res = 0;
    for (int i = 1; i < n - 1; i++) {
        int l_max = 0, r_max = 0;
        // 找右边最高的柱子
        for (int j = i; j < n; j++)
            r_max = Math.max(r_max, height[j]);
        // 找左边最高的柱子
        for (int j = i; j >= 0; j--)
            l_max = Math.max(l_max, height[j]);
        // 如果自己就是最高的话,
        // l_max == r_max == height[i]
        res += Math.min(l_max, r_max) - height[i];
    }
    return res;
}

有之前的思路,这个解法应该是很直接粗暴的,时间复杂度 O(N^2),空间复杂度 O(1)。但是很明显这种计算 `r_max` 和 `l_max` 的方式非常笨拙,一般的优化方法就是备忘录。

备忘录优化

之前的暴力解法,不是在每个位置 `i` 都要计算 `r_max` 和 `l_max` 吗?我们直接把结果都提前计算出来,别傻不拉几的每次都遍历,这时间复杂度不就降下来了嘛。

我们开两个数组 `r_max` 和 `l_max` 充当备忘录,`l_max[i]` 表示位置 `i` 左边最高的柱子高度,`r_max[i]` 表示位置 `i` 右边最高的柱子高度。预先把这两个数组计算好,避免重复计算:

class Solution {
    int trap(int[] height) {
        if (height.length == 0) {
            return 0;
        }
        int n = height.length;
        int res = 0;
        // 数组充当备忘录
        int[] l_max = new int[n];
        int[] r_max = new int[n];
        // 初始化 base case
        l_max[0] = height[0];
        r_max[n - 1] = height[n - 1];
        // 从左向右计算 l_max
        for (int i = 1; i < n; i++)
            l_max[i] = Math.max(height[i], l_max[i - 1]);
        // 从右向左计算 r_max
        for (int i = n - 2; i >= 0; i--)
            r_max[i] = Math.max(height[i], r_max[i + 1]);
        // 计算答案
        for (int i = 1; i < n - 1; i++)
            res += Math.min(l_max[i], r_max[i]) - height[i];
        return res;
    }
}

这个优化其实和暴力解法思路差不多,就是避免了重复计算,把时间复杂度降低为 O(N),已经是最优了,但是空间复杂度是 O(N)。下面来看一个精妙一些的解法,能够把空间复杂度降低到 O(1)。

双指针解法

这种解法的思路是完全相同的,但在实现手法上非常巧妙,我们这次也不要用备忘录提前计算了,而是用双指针边走边算,节省下空间复杂度。

首先,看一部分代码:

int trap(int[] height) {
    int left = 0, right = height.length - 1;
    int l_max = 0, r_max = 0;
    
    while (left < right) {
        l_max = Math.max(l_max, height[left]);
        r_max = Math.max(r_max, height[right]);
        // 此时 l_max 和 r_max 分别表示什么?
        left++; right--;
    }
}

对于这部分代码,请问 `l_max` 和 `r_max` 分别表示什么意义呢?

很容易理解,`l_max` 是 `height[0..left]` 中最高柱子的高度,`r_max` 是 `height[right..end]` 的最高柱子的高度

明白了这一点,直接看解法:

class Solution {
    int trap(int[] height) {
        int left = 0, right = height.length - 1;
        int l_max = 0, r_max = 0;

        int res = 0;
        while (left < right) {
            l_max = Math.max(l_max, height[left]);
            r_max = Math.max(r_max, height[right]);

            // res += min(l_max, r_max) - height[i]
            if (l_max < r_max) {
                res += l_max - height[left];
                left++;
            } else {
                res += r_max - height[right];
                right--;
            }
        }
        return res;
    }
}

你看,其中的核心思想和之前一模一样,换汤不换药。但是此解法还是有点细节差异:

之前的备忘录解法,`l_max[i]` 和 `r_max[i]` 分别代表 `height[0..i]` 和 `height[i..end]` 的最高柱子高度。

res += Math.min(l_max[i], r_max[i]) - height[i];

高效解决接雨水问题_第5张图片

但是双指针解法中,`l_max` 和 `r_max` 代表的是 `height[0..left]` 和 `height[right..end]` 的最高柱子高度。比如这段代码:

if (l_max < r_max) {
    res += l_max - height[left];
    left++; 
} 

高效解决接雨水问题_第6张图片

此时的 `l_max` 是 `left` 指针左边的最高柱子,但是 `r_max` 并不一定是 `left` 指针右边最高的柱子,这真的可以得到正确答案吗?

其实这个问题要这么思考,我们只在乎 `min(l_max, r_max)`。对于上图的情况,我们已经知道 `l_max < r_max` 了,至于这个 `r_max` 是不是右边最大的,不重要。重要的是 `height[i]` 能够装的水只和较低的 `l_max` 之差有关

高效解决接雨水问题_第7张图片

这样,接雨水问题就解决了。

你可能感兴趣的:(java,力扣,算法)