双指针 & 滑动窗口

快慢指针

解决主要解决链表中的问题,比如典型的判定链表中是否包含环

快慢指针一般都初始化指向链表的头结点head,前进时快指针fast在前,慢指针slow在后,巧妙解决一些链表中的问题。

1、判定链表中是否含有环

用两个指针,一个跑得快,一个跑得慢。如果不含有环,跑得快的那个指针最终会遇到null,说明链表不含环;如果含有环,快指针最终会超慢指针一圈,和慢指针相遇,说明链表含有环。

2、已知链表中含有环,返回这个环的起始位置

当快慢指针相遇时,让其中任一个指针指向头节点,然后让它俩以相同速度前进,再次相遇时所在的节点位置就是环开始的位置。

双指针 & 滑动窗口_第1张图片

fast一定比slow多走了k步,这多走的k步其实就是fast指针在环里转圈圈,所以k的值就是环长度的「整数倍」

说句题外话,之前还有读者争论为什么是环长度整数倍,我举个简单的例子你就明白了,我们想一想极端情况,假设环长度就是 1,如下图:

双指针 & 滑动窗口_第2张图片

那么fast肯定早早就进环里转圈圈了,而且肯定会转好多圈,这不就是环长度的整数倍嘛。

言归正传,设相遇点距环的起点的距离为m,那么环的起点距头结点head的距离为k - m,也就是说如果从head前进k - m步就能到达环起点。

巧的是,如果从相遇点继续前进k - m步,也恰好到达环起点。你甭管fast在环里到底转了几圈,反正走k步可以到相遇点,那走k - m步一定就是走到环起点了:

双指针 & 滑动窗口_第3张图片

所以,只要我们把快慢指针中的任一个重新指向head,然后两个指针同速前进,k - m步后就会相遇,相遇之处就是环的起点了。

3、寻找链表的倒数第n个元素

快慢指针,让快指针先走n步,然后快慢指针开始同速前进。这样当快指针走到链表末尾null时,慢指针所在的位置就是倒数第n个链表节点(n不会超过链表长度)。

左右指针

主要解决数组(或者字符串)中的问题,比如二分查找。

二分查找

int binarySearch(int[] nums, int target) {
    int left = 0; 
    int right = nums.length - 1;
    while(left <= right) {
        int mid = (right + left) / 2;
        if(nums[mid] == target)
            return mid; 
        else if (nums[mid] < target)
            left = mid + 1; 
        else if (nums[mid] > target)
            right = mid - 1;
    }
    return -1;
}

滑动窗口

  1. 使用滑动窗口解题的场景:问题本身和能 单调性 建立关系,窗口内就是解决单调性的。

  2. 看到题目能跟单调性扯上关系,那么立即想到滑动窗口、首尾指针法、单调栈、单调队列

  3. 滑动窗口的实现可以基于双端队列,也可以基于左右指针,优先考虑左右指针更节省空间,但是如果需要对窗口中的元素进行一定的处理操作,那么选择双端队列实现。左右指针是通过左指针代表左边界,右指针代表右边界,二者同时向右移动的基础原理。双端队列是左端点出数,右端点进数,不断的将元素入队和出队来实现的。

  4. 单调队列的实现流程:pop和push操作要保持如下规则,pop(value):如果窗口移除的元素value等于单调队列的出口元素,那么队列弹出元素,否则不用任何操作。push(value):如果push的元素value大于入口元素的数值,那么就将队列出口的元素弹出,直到push元素的数值小于等于队列入口元素的数值为止。

双指针 & 滑动窗口_第4张图片

 该算法的大致逻辑如下: 

int left = 0, right = 0;

while (right < s.size()) {`
    // 增大窗口
    window.add(s[right]);
    right++;

    while (window needs shrink) {
        // 缩小窗口
        window.remove(s[left]);
        left++;
    }
}

这个算法技巧的时间复杂度是 O(N),比字符串暴力算法要高效得多。

其实困扰大家的,不是算法的思路,而是各种细节问题。比如说如何向窗口中添加新元素,如何缩小窗口,在窗口滑动的哪个阶段更新结果。即便你明白了这些细节,也容易出 bug,找 bug 还不知道怎么找,真的挺让人心烦的。

今天写一套滑动窗口算法的代码框架,我连在哪里做输出 debug 都给你写好了,以后遇到相关的问题,你就默写出来如下框架然后改三个地方就行,还不会出 bug:

/* 滑动窗口算法框架 */
void slidingWindow(string s, string t) {
    unordered_map need, window;
    for (char c : t) need[c]++;

    int left = 0, right = 0;
    int valid = 0; 
    while (right < s.size()) {
        // c 是将移入窗口的字符
        char c = s[right];
        // 右移窗口
        right++;
        // 进行窗口内数据的一系列更新
        ...

        /*** debug 输出的位置 ***/
        printf("window: [%d, %d)\n", left, right);
        /********************/

        // 判断左侧窗口是否要收缩
        while (window needs shrink) {
            // d 是将移出窗口的字符
            char d = s[left];
            // 左移窗口
            left++;
            // 进行窗口内数据的一系列更新
            ...
        }
    }
}

其中两处 ... 表示的更新窗口数据的地方,到时候你直接往里面填就行了。

而且,这两个 ... 处的操作分别是右移和左移窗口更新操作,它们操作是完全对称的

说句题外话,我发现很多人喜欢执着于表象,不喜欢探求问题的本质。比如说有很多人评论我这个框架,说什么散列表速度慢,不如用数组代替散列表;还有很多人喜欢把代码写得特别短小,说我这样代码太多余,影响编译速度,LeetCode 上速度不够快。我服了。算法看的是时间复杂度,你能确保自己的时间复杂度最优,就行了。至于 LeetCode 所谓的运行速度,那个都是玄学,只要不是慢的离谱就没啥问题,根本不值得你从编译层面优化,不要舍本逐末……

重点在于算法思想,你把框架思维了然于心,然后随你魔改代码好吧,你高兴就好。

unordered_map 就是哈希表(字典),它的一个方法 count(key) 相当于 Java 的 containsKey(key) 可以判断键 key 是否存在。

可以使用方括号访问键对应的值 map[key]。需要注意的是,如果该 key 不存在,C++ 会自动创建这个 key,并把 map[key] 赋值为 0。

所以代码中多次出现的 map[key]++ 相当于 Java 的 map.put(key, map.getOrDefault(key, 0) + 1)。

1.最小覆盖子串

LeetCode 76 题,Minimum Window Substring,难度 Hard:

双指针 & 滑动窗口_第5张图片

就是说要在 S(source) 中找到包含 T(target) 中全部字母的一个子串,且这个子串一定是所有可能子串中最短的。

如果我们使用暴力解法,代码大概是这样的: 

for (int i = 0; i < s.size(); i++)
    for (int j = i + 1; j < s.size(); j++)
        if s[i:j] 包含 t 的所有字母:
            更新答案

思路很直接,但是显然,这个算法的复杂度肯定大于 O(N^2) 了,不好。

滑动窗口算法的思路是这样:

1、我们在字符串 S 中使用双指针中的左右指针技巧,初始化 left = right = 0,把索引左闭右开区间 [left, right) 称为一个「窗口」。

2、我们先不断地增加 right 指针扩大窗口 [left, right),直到窗口中的字符串符合要求(包含了 T 中的所有字符)。

3、此时,我们停止增加 right,转而不断增加 left 指针缩小窗口 [left, right),直到窗口中的字符串不再符合要求(不包含 T 中的所有字符了)。同时,每次增加 left,我们都要更新一轮结果。

4、重复第 2 和第 3 步,直到 right 到达字符串 S 的尽头。

这个思路其实也不难,第 2 步相当于在寻找一个「可行解」然后第 3 步在优化这个「可行解」,最终找到最优解,也就是最短的覆盖子串。左右指针轮流前进,窗口大小增增减减,窗口不断向右滑动,这就是「滑动窗口」这个名字的来历。

下面画图理解一下,needs 和 window 相当于计数器,分别记录 T 中字符出现次数和「窗口」中的相应字符的出现次数。

初始状态:

双指针 & 滑动窗口_第6张图片

增加 right,直到窗口 [left, right] 包含了 T 中所有字符:

双指针 & 滑动窗口_第7张图片

现在开始增加 left,缩小窗口 [left, right]。

双指针 & 滑动窗口_第8张图片

直到窗口中的字符串不再符合要求,left 不再继续移动。

双指针 & 滑动窗口_第9张图片

之后重复上述过程,先移动 right,再移动 left…… 直到 right 指针到达字符串 S 的末端,算法结束。

如果你能够理解上述过程,恭喜,你已经完全掌握了滑动窗口算法思想。现在我们来看看这个滑动窗口代码框架怎么用:

首先,初始化 window 和 need 两个哈希表,记录窗口中的字符和需要凑齐的字符:

unordered_map need, window;
for (char c : t) need[c]++;

然后,使用 left 和 right 变量初始化窗口的两端,不要忘了,区间 [left, right) 是左闭右开的,所以初始情况下窗口没有包含任何元素:

int left = 0, right = 0;
int valid = 0; 
while (right < s.size()) {
    // 开始滑动
}

 其中 valid 变量表示窗口中满足 need 条件的字符个数,如果 valid 和 need.size 的大小相同,则说明窗口已满足条件,已经完全覆盖了串 T。

现在开始套模板,只需要思考以下四个问题:

1、当移动 right 扩大窗口,即加入字符时,应该更新哪些数据?

2、什么条件下,窗口应该暂停扩大,开始移动 left 缩小窗口?

3、当移动 left 缩小窗口,即移出字符时,应该更新哪些数据?

4、我们要的结果应该在扩大窗口时还是缩小窗口时进行更新?

如果一个字符进入窗口,应该增加 window 计数器;如果一个字符将移出窗口的时候,应该减少 window 计数器;当 valid 满足 need 时应该收缩窗口;应该在收缩窗口的时候更新最终结果。

下面是完整代码:

string minWindow(string s, string t) {
    unordered_map need, window;
    for (char c : t) need[c]++;

    int left = 0, right = 0;
    int valid = 0;
    // 记录最小覆盖子串的起始索引及长度
    int start = 0, len = INT_MAX;
    while (right < s.size()) {
        // c 是将移入窗口的字符
        char c = s[right];
        // 右移窗口
        right++;
        // 进行窗口内数据的一系列更新
        if (need.count(c)) {
            window[c]++;
            if (window[c] == need[c])
                valid++;
        }

        // 判断左侧窗口是否要收缩
        while (valid == need.size()) {
            // 在这里更新最小覆盖子串
            if (right - left < len) {
                start = left;
                len = right - left;
            }
            // d 是将移出窗口的字符
            char d = s[left];
            // 左移窗口
            left++;
            // 进行窗口内数据的一系列更新
            if (need.count(d)) {
                if (window[d] == need[d])
                    valid--;
                window[d]--;
            }                    
        }
    }
    // 返回最小覆盖子串
    return len == INT_MAX ?
        "" : s.substr(start, len);
}

需要注意的是,当我们发现某个字符在 window 的数量满足了 need 的需要,就要更新 valid,表示有一个字符已经满足要求。而且,你能发现,两次对窗口内数据的更新操作是完全对称的。

当 valid == need.size() 时,说明 T 中所有字符已经被覆盖,已经得到一个可行的覆盖子串,现在应该开始收缩窗口了,以便得到「最小覆盖子串」。

移动 left 收缩窗口时,窗口内的字符都是可行解,所以应该在收缩窗口的阶段进行最小覆盖子串的更新,以便从可行解中找到长度最短的最终结果。

至此,应该可以完全理解这套框架了,滑动窗口算法又不难,就是细节问题让人烦得很。以后遇到滑动窗口算法,你就按照这框架写代码,保准没有 bug,还省事儿。

下面就直接利用这套框架秒杀几道题吧,你基本上一眼就能看出思路了。

2.字符串排列

LeetCode 567 题,Permutation in String,难度 Medium:

双指针 & 滑动窗口_第10张图片

注意哦,输入的 s1 是可以包含重复字符的,所以这个题难度不小。

这种题目,是明显的滑动窗口算法,相当给你一个 S 和一个 T,请问你 S 中是否存在一个子串,包含 T 中所有字符且不包含其他字符?

首先,先复制粘贴之前的算法框架代码,然后明确刚才提出的 4 个问题,即可写出这道题的答案:


// 判断 s 中是否存在 t 的排列
bool checkInclusion(string t, string s) {
    unordered_map need, window;
    for (char c : t) need[c]++;

    int left = 0, right = 0;
    int valid = 0;
    while (right < s.size()) {
        char c = s[right];
        right++;
        // 进行窗口内数据的一系列更新
        if (need.count(c)) {
            window[c]++;
            if (window[c] == need[c])
                valid++;
        }

        // 判断左侧窗口是否要收缩
        while (right - left >= t.size()) {
            // 在这里判断是否找到了合法的子串
            if (valid == need.size())
                return true;
            char d = s[left];
            left++;
            // 进行窗口内数据的一系列更新
            if (need.count(d)) {
                if (window[d] == need[d])
                    valid--;
                window[d]--;
            }
        }
    }
    // 未找到符合条件的子串
    return false;
}

 对于这道题的解法代码,基本上和最小覆盖子串一模一样,只需要改变两个地方:

1、本题移动 left 缩小窗口的时机是窗口大小大于 t.size() 时,应为排列嘛,显然长度应该是一样的。

2、当发现 valid == need.size() 时,就说明窗口中就是一个合法的排列,所以立即返回 true。

至于如何处理窗口的扩大和缩小,和最小覆盖子串完全相同。

3、找所有字母异位词

这是 LeetCode 第 438 题,Find All Anagrams in a String,难度 Medium:

双指针 & 滑动窗口_第11张图片

呵呵,这个所谓的字母异位词,不就是排列吗,搞个高端的说法就能糊弄人了吗?相当于,输入一个串 S,一个串 T,找到 S 中所有 T 的排列,返回它们的起始索引。

直接默写一下框架,明确刚才讲的 4 个问题,即可秒杀这道题: 

vector findAnagrams(string s, string t) {
    unordered_map need, window;
    for (char c : t) need[c]++;

    int left = 0, right = 0;
    int valid = 0;
    vector res; // 记录结果
    while (right < s.size()) {
        char c = s[right];
        right++;
        // 进行窗口内数据的一系列更新
        if (need.count(c)) {
            window[c]++;
            if (window[c] == need[c]) 
                valid++;
        }
        // 判断左侧窗口是否要收缩
        while (right - left >= t.size()) {
            // 当窗口符合条件时,把起始索引加入 res
            if (valid == need.size())
                res.push_back(left);
            char d = s[left];
            left++;
            // 进行窗口内数据的一系列更新
            if (need.count(d)) {
                if (window[d] == need[d])
                    valid--;
                window[d]--;
            }
        }
    }
    return res;
}

跟寻找字符串的排列一样,只是找到一个合法异位词(排列)之后将起始索引加入 res 即可。

4、最长无重复子串

这是 LeetCode 第 3 题,Longest Substring Without Repeating Characters,难度 Medium:

双指针 & 滑动窗口_第12张图片

这个题终于有了点新意,不是一套框架就出答案,不过反而更简单了,稍微改一改框架就行了:

int lengthOfLongestSubstring(string s) {
    unordered_map window;

    int left = 0, right = 0;
    int res = 0; // 记录结果
    while (right < s.size()) {
        char c = s[right];
        right++;
        // 进行窗口内数据的一系列更新
        window[c]++;
        // 判断左侧窗口是否要收缩
        while (window[c] > 1) {
            char d = s[left];
            left++;
            // 进行窗口内数据的一系列更新
            window[d]--;
        }
        // 在这里更新答案
        res = max(res, right - left);
    }
    return res;
}

这就是变简单了,连 need 和 valid 都不需要,而且更新窗口内数据也只需要简单的更新计数器 window 即可。

当 window[c] 值大于 1 时,说明窗口中存在重复字符,不符合条件,就该移动 left 缩小窗口了嘛。

唯一需要注意的是,在哪里更新结果 res 呢?我们要的是最长无重复子串,哪一个阶段可以保证窗口中的字符串是没有重复的呢?

这里和之前不一样,要在收缩窗口完成后更新 res,因为窗口收缩的 while 条件是存在重复元素,换句话说收缩完成后一定保证窗口中没有重复嘛。

高频题

1.接雨水

对于这种问题,我们不要想整体,而应该去想局部;就像之前的文章写的动态规划问题处理字符串问题,不要考虑如何处理整个字符串,而是去思考应该如何处理每一个字符。

仅仅对于位置 i,能装下多少水呢?

双指针 & 滑动窗口_第13张图片

能装 2 格水,因为 height[i] 的高度为 0,而这里最多能盛 2 格水,2-0=2。

为什么位置 i 最多能盛 2 格水呢?因为,位置 i 能达到的水柱高度和其左边的最高柱子、右边的最高柱子有关,我们分别称这两个柱子高度为 l_max 和 r_max;位置 i 最大的水柱高度就是 min(l_max, r_max)。

更进一步,对于位置 i,能够装的水为:

water[i] = min(  max(height[0..i]), //左边最高的柱子              

                 max(height[i..end]) //右边最高的柱子

              )-height[i] 

双指针 & 滑动窗口_第14张图片

此时的 l_max 是 left 指针左边的最高柱子,但是 r_max 并不一定是 left 指针右边最高的柱子,这真的可以得到正确答案吗?

其实这个问题要这么思考,我们只在乎 min(l_max, r_max)。对于上图的情况,我们已经知道 l_max < r_max 了,至于这个 r_max 是不是右边最大的,不重要。重要的是 height[i] 能够装的水只和较低的 l_max 之差有关(短板效应)

双指针 & 滑动窗口_第15张图片

 

class Solution {
public:
    int trap(vector& height) {
        int size = height.size(), left = 0, right = size-1;
        int res = 0, l_max = 0, r_max = 0;
        while(left = r_max){
                res += max(0,r_max - height[right]);
                --right;
            }

        }
        return res;

    }
};

五、最后总结

建议背诵并默写这套框架,顺便背诵一下文章开头的那首诗。以后就再也不怕子串、子数组问题了好吧。

参考资料

  1. 双指针技巧直接秒杀五道算法题
  2. 我写了套框架,把滑动窗口算法变成了默写题

你可能感兴趣的:(#,数据结构与算法,链表,b树,数据结构)