- AI浪潮下程序员的职业转型与技术进阶之路
nbsaas-boot
人工智能
一、引言1.1研究背景与意义在科技飞速发展的当今时代,人工智能(AI)无疑是最为耀眼的技术领域之一。从早期简单的专家系统到如今复杂的深度学习模型,AI技术经历了从理论探索到广泛应用的巨大跨越,正以前所未有的速度改变着我们的生活和工作方式。近年来,AI技术取得了一系列突破性进展。以GPT系列为代表的大型语言模型,展现出强大的自然语言处理能力,能够实现文本生成、对话交互、代码编写等多种任务。根据《20
- TensorFlow实现卷积神经网络CNN
红叶骑士之初
Tensorflow
一、卷积神经网络CNN简介卷积神经网络(ConvolutionalNeuralNetwork,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等。CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程。在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取
- OpenCV图像旋转90度的最简单方法
时光荏苒-
opencv计算机视觉人工智能OpenCV
OpenCV是一个功能强大的计算机视觉库,提供了许多图像处理和计算机视觉算法。在OpenCV中,图像旋转是一项常见的操作。本文将介绍如何使用OpenCV将图像旋转90度的最简单方法。步骤1:导入OpenCV库在Python中使用OpenCV库需要先导入库。可以使用以下代码导入OpenCV库:importcv2步骤2:读取图像使用OpenCV读取图像需要使用cv2.imread()函数。该函数接受一
- DeepSeek的出现对全球GPT产业产生的冲击
不要em0啦
机器学习gpt
引言近年来,人工智能技术的迅猛发展推动了自然语言处理(NLP)领域的革命性进步。特别是以GPT(GenerativePre-trainedTransformer)系列模型为代表的大规模预训练语言模型,已经在全球范围内引发了广泛关注和应用。然而,随着技术的不断演进,新兴的GPT模型如DeepSeek的出现,正在对全球GPT产业产生深远的影响。本文将从技术、市场、应用场景和产业生态等多个维度,深入探讨
- 目标检测的超级英雄:YOLO带你识别世界
星际编程喵
Python探索之旅目标检测YOLO目标跟踪人工智能计算机视觉python
前言YOLO(YouOnlyLookOnce)是计算机视觉领域一颗璀璨的明星,它以高效、快速著称,成为目标检测算法的代表。今天,我们一起走进YOLO的世界,看看它如何神奇地识别图像中的物体。当然,不用担心,这篇文章会让你轻松理解,并且我会用幽默、通俗的语言给大家展示这项技术。相信我,看完之后,你会觉得YOLO不仅是个算法,更像是个看得懂、说得清的技术伙伴。简介YOLO不仅是一个简单的目标检测模型,
- 国产AI疯卷!DeepSeek-R1成开源霸主,字节腾讯纷纷放大招?
盼达思文体科创
经验分享
引言家人们,最近的AI圈简直是“火药味”十足,热闹程度堪比世界杯!在科技飞速发展的当下,人工智能领域已经成为全球科技竞争的焦点,各国科技企业都在这个赛道上你追我赶,试图占据一席之地。AI技术不仅深刻改变了我们的生活方式,像智能语音助手让生活更便捷,智能推荐算法让信息获取更精准,还推动了众多行业的变革,如医疗、交通、金融等。今天咱们要聊的这几件AI大事,每一件都可能会对未来的科技走向产生深远影响。先
- 打架检测系统:基于YOLOv5的实时人群打架行为识别
2025年数学建模美赛
YOLO深度学习ui计算机视觉视觉检测
1.引言打架检测,作为一个复杂且具有挑战性的任务,已经在多个领域展现出其巨大的应用潜力,尤其是在公共安全监控、安防摄像头、智能城市等应用场景中。通过深度学习技术,尤其是基于YOLOv5的目标检测,我们能够对实时视频流中的人群行为进行实时监控,并有效地检测和识别人群中的打架行为。本博客将详细介绍如何使用YOLOv5模型搭建一个打架检测系统,包含数据集准备、YOLOv5训练、UI界面设计以及优化和部署
- 深度学习目标检测中的_单目测距原理与实现 关键点及改进建议
QQ_767172261
单目测距深度学习目标检测人工智能
深度学习目标检测中的_单目测距原理与实现关键点及改进建议文章目录单目测距的进一步解释1.焦距的确定2.物体宽度\(W\)的获取3.图像处理技巧4.提高性能的建议5.实现代码中的注释添加一、前言单目视觉测距:网上有很多关于单目测距的文章,主要借鉴的是OpenCV学习笔记(二十一)——简单的单目视觉测距尝试和单目摄像机测距(python+opencv)两篇文章,在这里特别作出说明。工作环境:Ubunt
- Python 图像处理进阶:特征提取与图像分类
极客代码
玩转Python玩转AI开发语言python图像处理人工智能
特征提取特征提取是计算机视觉中的一个重要环节,它可以从图像中提取出有助于后续处理的特征,比如用于识别和分类的关键点、纹理等。常见的特征提取方法包括SIFT、SURF和ORB等。SIFT(尺度不变特征变换)SIFT是一种用于检测图像中的关键点及其描述符的方法。SIFT特征具有尺度不变性和旋转不变性,适用于图像匹配和识别。原理:SIFT通过在不同尺度的空间内寻找极值点来检测关键点,并利用梯度方向的直方
- Qwen2.5-Max
百态老人
笔记大数据人工智能
Qwen2.5-Max是阿里巴巴于2024年1月29日发布的一款旗舰级人工智能模型,基于混合专家(MoE)架构开发,拥有超过20万亿tokens的超大规模预训练数据。这一模型在多项权威基准测试中展现了卓越的性能,超越了包括DeepSeekV3、GPT-4和Claude-3.5-Sonnet在内的多款国际顶尖AI模型,标志着中国AI技术在高性能、低成本路线上的重大突破。技术特点与优势超大规模预训练数
- 神经架构搜索:自动化设计神经网络的方法
俊星学长
架构自动化神经网络
神经架构搜索:自动化设计神经网络的方法一、引言在深度学习领域,神经网络架构的设计对模型的性能具有至关重要的影响。传统的神经网络设计依赖于专家经验和大量实验,这一过程繁琐且耗时。为了解决这一问题,神经架构搜索(NeuralArchitectureSearch,NAS)应运而生。NAS是一种自动化设计神经网络架构的方法,旨在通过搜索最优的神经网络结构来提高模型性能。本文将详细介绍神经架构搜索的定义、产
- ChatGPT-4o和ChatGPT-4o mini的差异点
老六哥_AI助理指南
人工智能chatgpt
在人工智能领域,OpenAI再次引领创新潮流,近日正式发布了其最新模型——ChatGPT-4o及其经济实惠的小型版本ChatGPT-4oMini。这两款模型虽同属于ChatGPT系列,但在性能、应用场景及成本上展现出显著的差异。本文将通过图文并茂的方式,深入解析两者之间的不同点。一、性能差异ChatGPT-4o:全能型语言模型多模态处理能力:ChatGPT-4o不仅限于文本处理,更能够实时处理和生
- 第一章: AIGC概述
野老杂谈
AIGC时代的创新与未来AIGC大模型人工智能神经网络
1.AIGC的定义与历史1.1什么是AIGC?AIGC,全称为人工智能生成内容(ArtificialIntelligenceGeneratedContent),是一种利用人工智能技术来自动生成各种类型内容的方式。这些内容包括文字、图像、音频和视频等。简单来说,就是让计算机像人一样创作。例如,AI可以生成一篇文章、一幅画、一段音乐,甚至是一部短视频。AIGC是如何运作的?AIGC的核心技术包括机器学
- Ubuntu16.04环境下安装cuda10+pytorch1.2
小楼昨夜,东风
pytorch深度学习神经网络
1、背景环境:Ubuntu16.04&titanx作为新一代的人工智能训练平台的PYTORCH,有其独特的优势,为此,完整的安装这一平台,是开展所有工作的首要条件,一开始,笔者认为应该轻松的完成,但是发现实际上要从零完成这一工作,尤其是在NVIDIATITANX下,是需要3~4天的摸索的,为了便于后续的工作,也为了后面使用的童鞋,写下这篇文章,闲话少说,先上最终完成shell输出。xxx@xxxU
- 深度学习盛行,还记得哪些传统机器学习方法和模型?
硬件学长森哥
人工智能深度学习机器学习人工智能
开头森哥说:假期前后在准备成像技术的总结,目前已完成两部分,争取在摸索出一些编辑和运营技巧后,完善成一个系列和大家见面;当然也有可能会通过一些更加贴合摄影实用的角度出一些更加浅显的内容。最终如何呈现还需要慢慢摸索。传统机器学习是指在深度学习盛行之前开发的机器学习和人工智能技术。这些传统方法通常依赖于手工设计的特征提取和模型结构。而深度学习是一种机器学习技术,它通过深层神经网络从原始数据中学习特征表
- 1、PyTorch 简介
找个栗子
PyTorch开始到scipytorch人工智能python
PyTorch是什么?首先,我们讲PyTorch,我们先讲它的前身--torch。1、torchTorch是PyTorch的前身,Torch是一个有着悠久历史的机器学习框架,最初由RonanCollobert、SoumithChintala和KorayKavukcuoglu等人开发。Torch是以Lua语言为基础,在2002年左右就开始逐渐发展起来,在计算机视觉、自然语言处理等领域有一定的应用。o
- 探索自然语言处理的前沿:使用OpenAI API进行文本分析
qq_37836323
自然语言处理easyui人工智能python
#引言自然语言处理(NLP)是人工智能领域中最令人兴奋和快速发展的部分之一。本文将介绍如何使用OpenAI的API进行文本分析。我们将通过代码示例,深入探讨如何利用这些工具来提升应用程序的智能和功能。#主要内容##什么是OpenAIAPI?OpenAIAPI提供了强大的自然语言处理能力,能够帮助开发者在自己的应用中集成先进的语言模型。这些模型可以用于文本生成、情感分析、翻译等多种任务。##使用AP
- 【PyTorch】6.张量运算函数:一键开启!PyTorch 张量函数的宝藏工厂
Icomi_
805.Pytorch入门pytorch人工智能pythonc语言c++深度学习机器学习
目录1.常见运算函数个人主页:Icomi专栏地址:PyTorch入门在深度学习蓬勃发展的当下,PyTorch是不可或缺的工具。它作为强大的深度学习框架,为构建和训练神经网络提供了高效且灵活的平台。神经网络作为人工智能的核心技术,能够处理复杂的数据模式。通过PyTorch,我们可以轻松搭建各类神经网络模型,实现从基础到高级的人工智能应用。接下来,就让我们一同走进PyTorch的世界,探索神经网络与人
- 语音识别播报人工智能分类垃圾桶(论文+源码)
沐欣工作室_lvyiyi
人工智能语音识别毕业设计PLC单片机单片机毕业设计
2.1需求分析本次语音识别播报人工智能分类垃圾桶,设计功能要求如下∶1、具有四种垃圾桶,分别为用来回收厨余垃圾,有害垃圾,可回收垃圾,其他垃圾。2、当用户语音说出“旧报纸”,“剩菜”等特定词语时,系统可以通过语音识别模块准确检测出该垃圾属于何种类型,。3、根据检测出的垃圾类型,系统通过舵机自动打开相应的垃圾桶,并通过语音播报模块提醒用户。2.2系统整体设计针对分成需求,设计了如图2.1所示的整体系
- 《AI逆袭:科技与人类的终极对决,谁才是未来的主宰?》
云边有个稻草人
热门文章人工智能科技
目录第一章:人工智能的崛起1.1AI技术的基础与发展1.2AI的技术分支1.3AI的应用领域第二章:AI与人类的关系2.1AI对就业的影响2.2AI与伦理问题2.3AI与创意的结合第三章:AI的未来:谁才是主宰?3.1AI与人类的合作3.2AI的自主性与未来3.3AI与社会的融合第四章:AI技术实践——代码示例4.1图像分类(使用TensorFlow)结语导语人工智能(AI)无疑是当前科技发展的热
- OpenCV在Python 3.6中的安装与应用教程
北海有座岛
本文还有配套的精品资源,点击获取简介:OpenCV是一个功能丰富的计算机视觉库,适用于图像处理和分析。本文将介绍如何在Python3.6环境下安装和使用OpenCV,包括处理网络安装困难时的替代方案。同时,本文也涵盖了如何通过预编译的二进制文件(.whl)简化安装过程,并介绍了OpenCV的扩展模块和基础使用方法。1.OpenCV简介和应用领域OpenCV简介OpenCV(OpenSourceCo
- 自然语言编程:用 Cursor 将需求转化为代码
drebander
AI编程Cursor
引言在传统编程中,开发者需要精确掌握语法规则、API接口和框架特性才能实现功能需求。然而,随着人工智能技术的发展,以自然语言交互为核心的编程方式正在颠覆这一流程。Cursor作为一款智能编程助手,通过其自然语言编程功能,允许开发者直接通过文本描述生成代码,将模糊的需求快速转化为可执行的程序。本文将深入探讨Cursor的自然语言交互能力,并通过实际案例(如生成React组件、Python脚本等),展
- 模式识别与机器学习(Python实现):基于sklearn朴素贝叶斯模型实现男女分类
CV视界
模式识别机器学习与图像处理机器学习python人工智能
模式识别与机器学习(Python实现):基于sklearn朴素贝叶斯模型和pazen窗方法实现男女分类欢迎大家来到安静到无声的《模式识别与人工智能(程序与算法)》,如果对所写内容感兴趣请看模式识别与人工智能(程序与算法)系列讲解-总目录,同时这也可以作为大家学习的参考。欢迎订阅,优惠价只需9.9元,请多多支持!目录标题模式识别与机器学习(Python实现):基于sklearn朴素贝叶斯模型和paz
- ️ 在 Windows WSL 上部署 Ollama 和大语言模型的完整指南20241206
Narutolxy
技术干货分享智浪初航windows语言模型人工智能
️在WindowsWSL上部署Ollama和大语言模型的完整指南引言随着大语言模型(LLM)和人工智能的飞速发展,越来越多的开发者尝试在本地环境中部署大模型进行实验。然而,由于资源需求高、网络限制多以及工具复杂性,部署过程常常充满挑战。本指南基于实际经验,详细讲解如何在WindowsWSL(WindowsSubsystemforLinux)上部署Ollama和大语言模型,同时解决端口转发等常见痛点
- 无需标定板!Galibr:无需目标的LiDAR相机外参标定新方法
计算机视觉工坊
3D视觉从入门到精通数码相机自动驾驶
编辑:3DCV添加小助理:dddvision,备注:方向+学校/公司+昵称,拉你入群。文末附行业细分群扫描下方二维码,加入3D视觉知识星球,星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20门视频课程(星球成员免费学习)、最新顶会论文、3D视觉最新模组、3DGS系列(视频+文档)、计算机视觉书籍、优质3D视觉算法源码等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!写在前面这篇文章
- 线性回归的简单实现
SkaWxp
深度学习深度学习机器学习mxnetgluon
本文是《动手学深度学习》的笔记文章目录线性回归的简单实现生成随机数据集读取数据初始化模型参数定义模型定义损失函数定义优化算法训练模型线性回归的简洁实现生成数据集读取数据定义模型初始化模型参数定义损失函数定义优化算法训练模型线性回归的简单实现用了mxnet中的自动求导和数组结构frommxnetimportautograd,ndimportrandom生成随机数据集只有这个是用了自己造的数据,因为线
- 初入机器学习
辰尘_星启
机器学习人工智能深度学习pythonmxnet
写在前面本专栏专门撰写深度学习相关的内容,防止自己遗忘,也为大家提供一些个人的思考一切仅供参考概念辨析深度学习:本质是建模,将训练得到的模型作为系统的一部分使用侧重于发现样本集中隐含的规律难点是认识并了解模型,合理设置初始模型,要对建模对象有比较深刻的认识依赖大量的准确训练样本强化学习:本质是系统,直接将训练得到的模型视作系统本身(激进的像“端到端”)侧重于最大化当前环境下的奖励,最终目标是寻找环
- 深度学习:基于MindNLP的RAG应用开发
Landy_Jay
深度学习人工智能
什么是RAG?RAG(Retrieval-AugmentedGeneration,检索增强生成)是一种结合检索(Retrieval)和生成(Generation)的技术,旨在提升大语言模型(LLM)生成内容的准确性、相关性和时效性。基本思想:通过外部知识库动态检索与用户查询相关的信息,并将检索结果作为上下文输入生成模型,辅助生成更可靠的回答。与传统LLM的区别:传统LLM仅依赖预训练参数中的静态知
- 深度学习篇---张量&数据流动处理
Ronin-Lotus
深度学习篇深度学习人工智能pythonTensorFlowPytorch张量数据流动处理
文章目录前言第一部分:张量张量的基本概念1.维度标量(0维)向量(1维)矩阵(2维)三维张量2.形状张量运算1.基本运算加法减法乘法除法2.广播3.变形4.转置5.切片6.拼接7.矩阵分解8.梯度运算:深度学习框架中的张量运算1.自动求导2.硬件加速3.高度优化第二部分:数据流动与处理1.磁盘(硬盘或固态硬盘)读取数据写入数据2.内存(RAM)加载程序和数据数据交换3.缓存CPU缓存磁盘缓存4.数
- PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(NeuralODEs)是深度学习领域的创新性模型架构,它将神经网络的离散变换扩展为连续时间动力系统。与传统神经网络将层表示为离散变换不同,NeuralODEs将变换过程视为深度(或时间)的连续函数。这种方法为机器学习开创了新的研究方向,尤其在生成模型、时间序列分析和物理信息学习等领域具有重要应用。本文将基于Torchdyn(一个专门用于连续深度学习和平衡模型的PyTorch扩展库)
- HttpClient 4.3与4.3版本以下版本比较
spjich
javahttpclient
网上利用java发送http请求的代码很多,一搜一大把,有的利用的是java.net.*下的HttpURLConnection,有的用httpclient,而且发送的代码也分门别类。今天我们主要来说的是利用httpclient发送请求。
httpclient又可分为
httpclient3.x
httpclient4.x到httpclient4.3以下
httpclient4.3
- Essential Studio Enterprise Edition 2015 v1新功能体验
Axiba
.net
概述:Essential Studio已全线升级至2015 v1版本了!新版本为JavaScript和ASP.NET MVC添加了新的文件资源管理器控件,还有其他一些控件功能升级,精彩不容错过,让我们一起来看看吧!
syncfusion公司是世界领先的Windows开发组件提供商,该公司正式对外发布Essential Studio Enterprise Edition 2015 v1版本。新版本
- [宇宙与天文]微波背景辐射值与地球温度
comsci
背景
宇宙这个庞大,无边无际的空间是否存在某种确定的,变化的温度呢?
如果宇宙微波背景辐射值是表示宇宙空间温度的参数之一,那么测量这些数值,并观测周围的恒星能量输出值,我们是否获得地球的长期气候变化的情况呢?
&nbs
- lvs-server
男人50
server
#!/bin/bash
#
# LVS script for VS/DR
#
#./etc/rc.d/init.d/functions
#
VIP=10.10.6.252
RIP1=10.10.6.101
RIP2=10.10.6.13
PORT=80
case $1 in
start)
/sbin/ifconfig eth2:0 $VIP broadca
- java的WebCollector爬虫框架
oloz
爬虫
WebCollector主页:
https://github.com/CrawlScript/WebCollector
下载:webcollector-版本号-bin.zip将解压后文件夹中的所有jar包添加到工程既可。
接下来看demo
package org.spider.myspider;
import cn.edu.hfut.dmic.webcollector.cra
- jQuery append 与 after 的区别
小猪猪08
1、after函数
定义和用法:
after() 方法在被选元素后插入指定的内容。
语法:
$(selector).after(content)
实例:
<html>
<head>
<script type="text/javascript" src="/jquery/jquery.js"></scr
- mysql知识充电
香水浓
mysql
索引
索引是在存储引擎中实现的,因此每种存储引擎的索引都不一定完全相同,并且每种存储引擎也不一定支持所有索引类型。
根据存储引擎定义每个表的最大索引数和最大索引长度。所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节。
大多数存储引擎有更高的限制。MYSQL中索引的存储类型有两种:BTREE和HASH,具体和表的存储引擎相关;
MYISAM和InnoDB存储引擎
- 我的架构经验系列文章索引
agevs
架构
下面是一些个人架构上的总结,本来想只在公司内部进行共享的,因此内容写的口语化一点,也没什么图示,所有内容没有查任何资料是脑子里面的东西吐出来的因此可能会不准确不全,希望抛砖引玉,大家互相讨论。
要注意,我这些文章是一个总体的架构经验不针对具体的语言和平台,因此也不一定是适用所有的语言和平台的。
(内容是前几天写的,现附上索引)
前端架构 http://www.
- Android so lib库远程http下载和动态注册
aijuans
andorid
一、背景
在开发Android应用程序的实现,有时候需要引入第三方so lib库,但第三方so库比较大,例如开源第三方播放组件ffmpeg库, 如果直接打包的apk包里面, 整个应用程序会大很多.经过查阅资料和实验,发现通过远程下载so文件,然后再动态注册so文件时可行的。主要需要解决下载so文件存放位置以及文件读写权限问题。
二、主要
- linux中svn配置出错 conf/svnserve.conf:12: Option expected 解决方法
baalwolf
option
在客户端访问subversion版本库时出现这个错误:
svnserve.conf:12: Option expected
为什么会出现这个错误呢,就是因为subversion读取配置文件svnserve.conf时,无法识别有前置空格的配置文件,如### This file controls the configuration of the svnserve daemon, if you##
- MongoDB的连接池和连接管理
BigCat2013
mongodb
在关系型数据库中,我们总是需要关闭使用的数据库连接,不然大量的创建连接会导致资源的浪费甚至于数据库宕机。这篇文章主要想解释一下mongoDB的连接池以及连接管理机制,如果正对此有疑惑的朋友可以看一下。
通常我们习惯于new 一个connection并且通常在finally语句中调用connection的close()方法将其关闭。正巧,mongoDB中当我们new一个Mongo的时候,会发现它也
- AngularJS使用Socket.IO
bijian1013
JavaScriptAngularJSSocket.IO
目前,web应用普遍被要求是实时web应用,即服务端的数据更新之后,应用能立即更新。以前使用的技术(例如polling)存在一些局限性,而且有时我们需要在客户端打开一个socket,然后进行通信。
Socket.IO(http://socket.io/)是一个非常优秀的库,它可以帮你实
- [Maven学习笔记四]Maven依赖特性
bit1129
maven
三个模块
为了说明问题,以用户登陆小web应用为例。通常一个web应用分为三个模块,模型和数据持久化层user-core, 业务逻辑层user-service以及web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和user-service
依赖作用范围
Maven的dependency定义
- 【Akka一】Akka入门
bit1129
akka
什么是Akka
Message-Driven Runtime is the Foundation to Reactive Applications
In Akka, your business logic is driven through message-based communication patterns that are independent of physical locatio
- zabbix_api之perl语言写法
ronin47
zabbix_api之perl
zabbix_api网上比较多的写法是python或curl。上次我用java--http://bossr.iteye.com/blog/2195679,这次用perl。for example: #!/usr/bin/perl
use 5.010 ;
use strict ;
use warnings ;
use JSON :: RPC :: Client ;
use
- 比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
brotherlamp
linux运维工程师linux运维工程师教程linux运维工程师视频linux运维工程师资料linux运维工程师自学
比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
-----------------------------------------------------
兄弟连Linux运维工程师课堂实录-计算机基础-1-课程体系介绍1
链接:http://pan.baidu.com/s/1i3GQtGL 密码:bl65
兄弟连Lin
- bitmap求哈密顿距离-给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(
bylijinnan
java
import java.util.Random;
/**
* 题目:
* 给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(y1,y2,y3,y4,y5),
* 使得他们的哈密顿距离(d=|x1-y1| + |x2-y2| + |x3-y3| + |x4-y4| + |x5-y5|)最大
- map的三种遍历方法
chicony
map
package com.test;
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
public class TestMap {
public static v
- Linux安装mysql的一些坑
chenchao051
linux
1、mysql不建议在root用户下运行
2、出现服务启动不了,111错误,注意要用chown来赋予权限, 我在root用户下装的mysql,我就把usr/share/mysql/mysql.server复制到/etc/init.d/mysqld, (同时把my-huge.cnf复制/etc/my.cnf)
chown -R cc /etc/init.d/mysql
- Sublime Text 3 配置
daizj
配置Sublime Text
Sublime Text 3 配置解释(默认){// 设置主题文件“color_scheme”: “Packages/Color Scheme – Default/Monokai.tmTheme”,// 设置字体和大小“font_face”: “Consolas”,“font_size”: 12,// 字体选项:no_bold不显示粗体字,no_italic不显示斜体字,no_antialias和
- MySQL server has gone away 问题的解决方法
dcj3sjt126com
SQL Server
MySQL server has gone away 问题解决方法,需要的朋友可以参考下。
应用程序(比如PHP)长时间的执行批量的MYSQL语句。执行一个SQL,但SQL语句过大或者语句中含有BLOB或者longblob字段。比如,图片数据的处理。都容易引起MySQL server has gone away。 今天遇到类似的情景,MySQL只是冷冷的说:MySQL server h
- javascript/dom:固定居中效果
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&
- 使用 Spring 2.5 注释驱动的 IoC 功能
e200702084
springbean配置管理IOCOffice
使用 Spring 2.5 注释驱动的 IoC 功能
developerWorks
文档选项
将打印机的版面设置成横向打印模式
打印本页
将此页作为电子邮件发送
将此页作为电子邮件发送
级别: 初级
陈 雄华 (
[email protected]), 技术总监, 宝宝淘网络科技有限公司
2008 年 2 月 28 日
&nb
- MongoDB常用操作命令
geeksun
mongodb
1. 基本操作
db.AddUser(username,password) 添加用户
db.auth(usrename,password) 设置数据库连接验证
db.cloneDataBase(fromhost)
- php写守护进程(Daemon)
hongtoushizi
PHP
转载自: http://blog.csdn.net/tengzhaorong/article/details/9764655
守护进程(Daemon)是运行在后台的一种特殊进程。它独立于控制终端并且周期性地执行某种任务或等待处理某些发生的事件。守护进程是一种很有用的进程。php也可以实现守护进程的功能。
1、基本概念
&nbs
- spring整合mybatis,关于注入Dao对象出错问题
jonsvien
DAOspringbeanmybatisprototype
今天在公司测试功能时发现一问题:
先进行代码说明:
1,controller配置了Scope="prototype"(表明每一次请求都是原子型)
@resource/@autowired service对象都可以(两种注解都可以)。
2,service 配置了Scope="prototype"(表明每一次请求都是原子型)
- 对象关系行为模式之标识映射
home198979
PHP架构企业应用对象关系标识映射
HELLO!架构
一、概念
identity Map:通过在映射中保存每个已经加载的对象,确保每个对象只加载一次,当要访问对象的时候,通过映射来查找它们。其实在数据源架构模式之数据映射器代码中有提及到标识映射,Mapper类的getFromMap方法就是实现标识映射的实现。
二、为什么要使用标识映射?
在数据源架构模式之数据映射器中
//c
- Linux下hosts文件详解
pda158
linux
1、主机名: 无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。 公网:IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。 局域网:每台机器都有一个主机名,用于主机与主机之间的便于区分,就可以为每台机器设置主机
- nginx配置文件粗解
spjich
javanginx
#运行用户#user nobody;#启动进程,通常设置成和cpu的数量相等worker_processes 2;#全局错误日志及PID文件#error_log logs/error.log;#error_log logs/error.log notice;#error_log logs/error.log inf
- 数学函数
w54653520
java
public
class
S {
// 传入两个整数,进行比较,返回两个数中的最大值的方法。
public
int
get(
int
num1,
int
nu