- 【极光优化算法+分解对比】VMD-PLO-Transformer-LSTM多变量时间序列光伏功率预测Matlab代码
matlab科研助手
算法transformerlstm
✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍光伏发电作为一种清洁能源,其功率预测对于电网稳定运行和电力系统调度至关重要。然而,光伏功率具有高度的非线性和波动性,传统的预测方法难以准确捕捉其动态特性。近年来,深度学习技术在时间序列预测领域取得了显著进展,为提高光伏功率预测精度提供了新的途径
- 2024大模型秋招LLM相关面试题整理
AGI大模型资料分享官
人工智能深度学习机器学习自然语言处理语言模型easyui
0一些基础术语大模型:一般指1亿以上参数的模型,但是这个标准一直在升级,目前万亿参数以上的模型也有了。大语言模型(LargeLanguageModel,LLM)是针对语言的大模型。175B、60B、540B等:这些一般指参数的个数,B是Billion/十亿的意思,175B是1750亿参数,这是ChatGPT大约的参数规模。强化学习:(ReinforcementLearning)一种机器学习的方法,
- 【python实用小脚本-127】基于 Python 的 Google 图片爬取工具:实现高效图片数据收集
Kyln.Wu
Pythonpython开发语言
引言在数据科学、机器学习和多媒体应用中,图片数据的收集是一个常见且重要的任务。Google图片是一个丰富的图片资源库,能够为各种项目提供大量的图片数据。本文将介绍一个基于Python的Google图片爬取工具,它能够自动化地从Google图片搜索结果中下载图片。该工具主要利用了Python的selenium、BeautifulSoup、urllib和argparse库,结合了网页自动化和数据解析技
- 【python深度学习】DAY 51 复习日
抽风的雨610
【打卡】Python训练营python深度学习开发语言
作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高1.读取数据使用CIFAR-10图像数据importtorchfromtorchvisionimportdatasets,transforms#数据预处理transform=transforms.Compose([transforms.ToTensor(),transforms.
- 用Python解锁图像处理之力:从基础到智能应用的深度探索
熊猫钓鱼>_>
python图像处理开发语言
在像素构成的数字世界里,Python已成为解码图像奥秘的核心引擎。一、为何选择Python处理图像?超越工具的本质思考当人们谈论图像处理时,往往会陷入工具对比的漩涡(PythonvsMATLABvsC++)。但Python的真正价值在于其构建的完整生态闭环:科学计算基石:NumPy的ndarray结构完美对应图像的多维矩阵本质算法实现自由:从传统算子到深度学习模型的无缝衔接可视化即战力:Matpl
- 面向高校的人工智能通识教育课程实验设计方案
武汉唯众智创
人工智能人工智能通识教育课程实验人工智能通识教育人工智能通识课程人工智能通识
一、前言2018年,教育部发布《高等学校人工智能创新行动计划》,明确提出“重视人工智能与计算机、控制、数学、统计学、物理学、生物学、心理学、社会学、法学等学科专业教育的交叉融合,探索‘人工智能+X’的人才培养模式”。过去,人工智能教育多集中于研究生阶段,本科生接触机会相对有限。2019年,教育部批准35所高校增设“人工智能”本科专业,这标志着人工智能正式纳入本科教育体系。如今,人工智能课程大多是计
- 【Python爬虫进阶】从网页抓取到数据清洗与存储——完整实战教程
Python爬虫项目
python爬虫开发语言javascript自然语言处理selenium
1.为什么网页抓取后需要数据清洗?在实际项目中,抓取的原始数据往往是杂乱的、不完整的、格式各异的。如果不清洗,直接用来建模、分析,会导致:脏数据干扰(如乱码、重复数据)异常值影响结果(如薪资异常高)格式不统一(比如地点有中文名和英文名混杂)所以,抓取数据后,必须进行系统清洗与标准化,才能用于后续的:数据分析可视化展示机器学习建模2.项目概览:从抓取到存储的完整流程本项目流程如下:确定抓取目标(某招
- 验证码破解的可能与不可能:用Python处理图片验证码的原理与限制
程序员威哥
python开发语言
前言验证码(CAPTCHA)是当前互联网防护机制中的重要组成部分,用于区分真人与自动程序。近年来,随着自动化技术发展,验证码破解成为自动化测试、爬虫及安全研究领域的热点。然而,从技术层面来看,验证码破解既有可行之处,也存在根本限制。本文将结合Python图像处理与机器学习技术,深度剖析图片验证码破解的原理、实践与瓶颈。一、验证码的分类及破解难点1.验证码类型字符型验证码纯数字、字母或混合,最常见。
- 深度学习数据集加载
Ethan@LM
深度学习人工智能
数据集结构E:\Mytest\test20250622\pythonProject\dataset├──rose│├──rose1.jpg│├──rose2.jpg│└──...└──sunflower├──sunflower1.jpg├──sunflower2.jpg└──...主要只有的两个类fromtorch.utils.dataimportDatasetfromtorchvisionimp
- 使用TVM编译部署DarkNet模型:YOLO-V2和YOLO-V3实战指南
周情津Raymond
使用TVM编译部署DarkNet模型:YOLO-V2和YOLO-V3实战指南tvm-cnTVMDocumentationinChineseSimplified/TVM中文文档项目地址:https://gitcode.com/gh_mirrors/tv/tvm-cn前言在深度学习模型部署领域,TVM作为一个高效的深度学习编译器栈,能够将训练好的模型优化并部署到各种硬件平台上。本文将详细介绍如何使用T
- flask部署机器学习_如何开发端到端机器学习项目并使用Flask将其部署到Heroku
cumichun6193
大数据python机器学习人工智能深度学习
flask部署机器学习There'sonequestionIalwaysgetaskedregardingDataScience:关于数据科学,我经常被问到一个问题:WhatisthebestwaytomasterDataScience?Whatwillgetmehired?掌握数据科学的最佳方法是什么?什么会雇用我?Myanswerremainsconstant:Thereisnoalterna
- SpringBoot电商项目实战:从零搭建百万级架构
博主介绍:Java、Python、js全栈开发“多面手”,精通多种编程语言和技术,痴迷于人工智能领域。秉持着对技术的热爱与执着,持续探索创新,愿在此分享交流和学习,与大家共进步。DeepSeek-行业融合之万象视界(附实战案例详解100+)全栈开发环境搭建运行攻略:多语言一站式指南(环境搭建+运行+调试+发布+保姆级详解)感兴趣的可以先收藏起来,希望帮助更多的人SpringBoot电商项目实战:从
- 人工智能赋能气象气候:从数据智能到预测创新的融合之路
慌ZHANG
人工智能人工智能
个人主页:慌ZHANG-CSDN博客期待您的关注一、引言:气象气候与AI的“天然耦合”气象与气候系统是典型的复杂、多尺度、强非线性的自然系统,其建模、分析与预测依赖庞大观测数据和高性能计算资源。传统方法以数值天气预报(NWP)与物理建模为核心,虽然取得重要成就,但也面临计算代价大、精度不足、长期预测偏差大等瓶颈。与此同时,人工智能(AI),尤其是以深度学习为代表的机器学习方法,近年来在图像识别、自
- 【机器学习|学习笔记】类别特征(Categorical Features)处理方法,附代码。
努力毕业的小土博^_^
机器学习学习笔记机器学习学习笔记神经网络人工智能深度学习
【机器学习|学习笔记】类别特征(CategoricalFeatures)处理方法,附代码。【机器学习|学习笔记】类别特征(CategoricalFeatures)处理方法,附代码。文章目录【机器学习|学习笔记】类别特征(CategoricalFeatures)处理方法,附代码。前言✅为什么要处理类别特征?原因1:大多数模型不能处理字符串原因2:避免“错误的顺序假设”原因3:方便模型泛化与特征交互✅
- Python中使用Graphviz绘制决策树图解
黃昱儒
本文还有配套的精品资源,点击获取简介:Graphviz是一款用于数据可视化和算法流程展示的图形绘制软件,特别适用于Python中绘制决策树和其他图形类型。本安装包包含Graphviz安装程序和配置指南,以及如何在Python中利用pydot库等第三方库进行图形绘制的详细步骤。通过配置环境变量和利用DOT语言,用户可以将决策树模型转换为可视化图形,加深对机器学习模型的理解和调试。1.Graphviz
- 【深度学习|冰川制图9】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构
努力毕业的小土博^_^
优秀论文推荐深度学习学习架构
【深度学习|冰川制图9】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构【深度学习|冰川制图9】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构文章目录【深度学习|冰川制图9】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构结果与讨论3.1消融区制图欢迎铁子们点赞、关注、收藏!祝大家逢考必过!逢投必中!上岸上岸上岸!upupup大多数高校硕博生毕业要
- python模拟内置函数reversed_Python内置函数reversed
weixin_39594895
{"moduleinfo":{"card_count":[{"count_phone":1,"count":1}],"search_count":[{"count_phone":4,"count":4}]},"card":[{"des":"阿里技术人对外发布原创技术内容的最大平台;社区覆盖了云计算、大数据、人工智能、IoT、云原生、数据库、微服务、安全、开发与运维9大技术领域。","link1":
- 面向智能医疗的6G物联网和人工智能
Allen_Lyb
医疗高效编程研发物联网人工智能健康医疗
AbstractTheconvergenceof6Gwirelesstechnology,theInternetofThings(IoT),andArtificialIntelligence(AI)ispoisedtorevolutionizehealthcaredeliverybyenablingunprecedentedlevelsofconnectivity,intelligence,and
- OpenCV中DPM(Deformable Part Model)目标检测类cv::dpm::DPMDetector
村北头的码农
OpenCVopencv目标检测人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述OpenCV中用于基于可变形部件模型(DPM)的目标检测器,主要用于行人、人脸等目标的检测。它是一种传统的基于特征的目标检测方法,不依赖深度学习,而是使用HOG特征+部件模型来进行检测。示例代码#include#include#includeusingnamesp
- 深度学习前置知识全面解析:从机器学习到深度学习的进阶之路
一、引言:人工智能时代的核心技术在当今这个数据爆炸的时代,人工智能(AI)已经成为推动社会进步的核心技术之一。作为AI领域最重要的分支,深度学习(DeepLearning)在计算机视觉、自然语言处理、语音识别等领域取得了突破性进展,彻底改变了我们与机器交互的方式。本教案将从机器学习的基础知识出发,系统性地介绍深度学习的核心概念、数学基础、网络架构和训练方法,为读者构建完整的知识体系框架。无论你是刚
- PyTorch实战:从零构建CNN模型,轻松搞定MNIST手写数字识别
PyTorch实战:从零构建CNN模型,轻松搞定MNIST手写数字识别大家好!欢迎来到我的深度学习博客!对于每个踏入计算机视觉领域的人来说,MNIST手写数字识别就像是编程世界的“Hello,World!”。它足够简单,能够让我们快速上手;也足够完整,可以帮我们走通一个深度学习项目的全流程。之前我们可能用Keras体验过“搭积木”式的快乐,今天,我们将换一个同样强大且灵活的框架——PyTorch,
- 《ONNX推理部署全解析:从基础到进阶的实用指南》
空云风语
人工智能深度学习神经网络人工智能深度学习神经网络YOLOONNX
ONNX基础入门ONNX是什么ONNX,即OpenNeuralNetworkExchange(开放神经网络交换),是一种用于表示深度学习模型的开放标准文件格式。它由Facebook和Microsoft在2017年联合开发,后来得到了NVIDIA、Intel、AWS、Google、OpenAI等众多公司的支持,旨在解决不同深度学习框架之间模型格式不兼容的问题,为模型的存储、交换和部署提供统一标准,使
- AI 加持下的智能家居行业:变革、挑战与机遇
低代码老李
人工智能智能家居
在当今科技迅猛发展的浪潮中,人工智能(AI)已深深融入智能家居领域,成为推动其蓬勃发展的关键力量,为人们的生活带来了诸多便利和创新体验,同时也面临着一系列亟待解决的问题。一、AI驱动的智能家居功能升级(1)智能语音交互与控制智能语音助手作为智能家居的核心交互方式,借助自然语言处理(NLP)技术,让用户仅通过简单的语音指令,就能轻松操控家中各类智能设备,如精准控制灯光的开关与亮度调节、窗帘的开合、电
- 逻辑结构学派一(五个基础理论)
刘海东刘海东
人工智能
逻辑结构学派一(五个基础理论)作者:刘海东,中国广东技术师范大学摘要本篇论文通过《逻辑结构学派的宗旨》、《逻辑结构学》、《逻辑工程学》、《逻辑方程结构图理论》、《仿生逻辑理论》五个领域的研究提出《逻辑结构学派的宗旨》、《主观能动性结构》、《主观能动性结构工程》、《赋予生命的逻辑方程结构图》、《仿生逻辑》五个基础经典理论,让人工智能、机器人、智能社会三个主体的基础研究有了方向、方法和判断标准。关键词
- 基于图神经网络的ALS候选药物预测模型设计与实现
神经网络15044
MATLAB专栏神经网络深度学习神经网络人工智能深度学习机器学习
基于图神经网络的ALS候选药物预测模型设计与实现一、任务背景与意义肌萎缩侧索硬化症(ALS)是一种致命的神经退行性疾病,目前尚无有效治愈方法。传统药物发现流程耗时长、成本高,而人工智能技术为加速药物发现提供了新途径。本文设计并实现了一个基于图神经网络(GNN)的ALS候选药物预测模型,通过整合分子图结构信息和生物活性数据,实现对潜在治疗ALS化合物的高效筛选。二、系统架构设计
- 遥感影像岩性分类:基于CNN与CNN-EL集成学习的深度学习方法
神经网络15044
仿真模型神经网络深度学习深度学习分类cnn算法网络集成学习数据挖掘
遥感影像岩性分类:基于CNN与CNN-EL集成学习的深度学习方法1.任务概述岩性分类是地质遥感的核心任务,旨在通过遥感影像识别地表岩石类型。本文使用ASTER(多光谱热辐射传感器)和Sentinel(多光谱成像卫星)数据,采用卷积神经网络(CNN)及CNN-集成学习(CNN-EL)方法实现高精度岩性分类。2.数据预处理2.1数据源说明ASTER数据:14个波段(VNIR/SWIR/TIR),分辨率
- 大模型黄金时代!IT人转行指南:有人薪资翻倍,35+仍吃香_转行大模型!
高薪背后,是百万人才缺口与IT人前所未有的转型机遇当传统IT岗位增长放缓,一个全新领域正以惊人的速度重塑技术人才格局:大模型算法岗平均月薪突破6.8万元,AI产品经理岗月薪近5万元,自动驾驶等AI岗位扩招幅度高达60%36。与此同时,人社部数据显示我国人工智能领域人才缺口超过500万,供需比例达1:106。曾经焦虑“35岁危机”的程序员们发现,那些深耕大模型领域的同行不仅未被淘汰,反而成为企业竞相
- 大数据开发高频面试题:Spark与MapReduce解析
被招网约司机的盯上了好几天实习了六个月,到期被通知不能转正。外包裁员让我去友商我该去吗?offer比较华为状态码浏览器插件嵌入式项目推荐2019秋招总结+云从语音算法面经+银行群面面经科大讯飞语音算法面经语音算法美团一面已挂科大讯飞智能语音方向值得去吗?语音算法oc科大讯飞语音算法二面荣耀一面语音算法面经,已挂荣耀_语音算法工程一面科大讯飞语音一面凉经8.18携程机器学习(语音方向)一面【vivo
- 大模型卷出新高度|暴雨AI服务器M8878助解算力之困
BAOYUCompany
人工智能服务器运维
当今世界,作为新一轮科技革命和产业革命的重要驱动力,AI已经成为“兵家必争之地”。我国也在政府报告中首次将“人工智能+”行动纳入国家战略,开启了以人工智能为核心的数字经济高质量发展的新时代。当今世界,作为新一轮科技革命和产业革命的重要驱动力,AI已经成为“兵家必争之地”。我国也在政府报告中首次将“人工智能+”行动纳入国家战略,开启了以人工智能为核心的数字经济高质量发展的新时代。AI热度和话题持续火
- 探索AI时代:全国启动人工智能与未来公益讲座
私域合规研究
人工智能百度
人工智能与未来——AI赋能中小企业数字化升级公益讲座一、讲座背景随着科技的飞速发展,人工智能(AI)已经深入到了各行各业,为了推动AI技术在中小企业的广泛应用,助力企业拥抱新技术,迎接新机遇,拟申请联合组织AI赋能中小企业数字化升级公益讲座。讲座内容涵盖包括AI新媒体矩阵营销、AI智能跨境获客平台、AI+直播电商认证,AI+数字展厅、中检AI报关风险诊断及合规AI制单系统、AI+商品追溯、AI个人
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key