在分析某app的so时遇到了间接跳转类型的混淆,不去掉的话无法使用ida f5来静态分析,f5之后就长下面这样:
本文记录一下使用python+unicorn模拟执行来去掉混淆的过程。
混淆的汇编代码如下:
可以看到,这个代码块进行了一通运算,然后通过 br x8,跳转到寄存器x8中保存的地址,仔细分析这个x8的来源,可以观察到如下的固定模式:
1 2 3 4 5 6 7 8 9 10 11 12 |
|
先看 LDR X8, [X25,X9],X25寄存器是一张偏移表的基址, 这条指令从偏移表+X9出取出8字节数据放到了X8中,而X9的值来源于csel指令是0x38或者是0x40,由cmp的结果决定,如果X19等于0,则X9此时等于0x38,负责等于0x40。
再看 SUB X8, X8, X9,从偏移表取出一个8字节数据到X8之后,用X8减X9,结果放到X8,X9的值也是来源于csel指令,0x82B4或者是0xFE53
最后,通过br X8跳转到目标地址
也就是说,根据X9值的不同,最终跳转的地址会有两个,把正常的分支指令混淆成了上面这种模式,手动还原混淆可以把br X8 patch成:
1 2 |
|
本来想的是直接用python来匹配这种模式,然后手动计算出两个分支的地址,最后patch,但是后面发现,一个被混淆的函数中只有第一个混淆块会给X25赋值偏移表的地址,其他的块就直接用X25的值了,不会再次赋值,比如下面这个:
这样的话就不能把这些被混淆的块单独的拿出来看,因为缺少计算分支地址的必要条件,必须从函数的第一个被混淆的块出发,获取到偏移表的地址才行。如果还想通过手动的计算出目的地址,那就需要手动去确定函数的边界,这样就太麻烦了。
所以最后还是选择使通过模拟执行的方式,从函数头开始执行,跑通每一个块,在执行到混淆块的时候,计算出分支地址,最后进行patch
这里模拟执行的框架选择unicorn,之前学习过无名侠大佬用unicorn去ollvm混淆的文章,这里借鉴一下思路
由于代码中有需要访问偏移表,这些偏移表是在so的第二个segment,这个segment的内存便宜和文件便宜不一样,跟windows加载pe一样存在一个拉伸的效果,所以为了模拟执行代码时可以正常访问到偏移表的数据,我们手动将so拉伸成内存视图:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
|
这里借鉴无名侠大佬的思路,先把入口节点放到队列中,然后不停从队列中取节点,以这个节点为起点模拟执行,直到下一个br reg,或者是ret。
一个节点包括地址和上下文环境(寄存器),在模拟执行之前,需要把寄存器的值设置好,同时在找到分支之后,也需要保存现场的上下文环境。
在找到下一个br reg之后,计算出分支地址,将分支地址放到队列中,继续循环即可。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
|
hook_code是在unicorn中注册的指令执行回调,当执行uc.emu_start(addr, 0x10000)之后,就会开始模拟执行指令,同时调用hook_code,在hook_code中有很多重要的逻辑。
进入hook_code之后,需要保存执行的汇编指令以及上下文环境,供后续判断是否到达混淆块使用:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
这两个是函数的边界,执行到这里就需要停下,我没有找到如何优雅的判断执行到了bl .__stack_chk_fail,所以就判断bl后面的地址了。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
需要跳过这些指令,并不影响寻路
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
|
先判断是否是br指令,如果是,调用get_double_branch尝试去进一步匹配特征
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
|
进入get_double_branch,遍历指令栈,判断是否存在特定的指令,如果有则获取指定寄存器的值,最后计算出两个分支地址,这几个指令存在先后顺序,所以需要几个标志变量来控制。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
|
除了双分支,还有单分支的情况:
这种只有一个固定的分支,所以直接patch成 b 0xxxxxxxxx即可
所以如果上述特征匹配不成功,则认为是单分支
当遇到混淆块,计算出分支地址之后,就要进行patch了,双分支的patch需要两条指令的空间,但是有时候混淆块的倒数第二个指令是原来的指令,不能被覆盖,那么能用的就只有一条指令的空间。
那就只能找代码段中别的的空闲空间,调b跳转到空闲空间,然后在跳转到两个分支,找一个跳板。
当我在so中搜索nop时,居然发现了一段很长的nop,那用这里不就行了吗,反正去混淆也只是为了静态分析,不需要塞回去让so正常跑。
patch代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
|
最后将so数据写回文件
1 2 3 |
|