C++之std::tuple(一) : 使用

目录

1.简介

2.创建元组

2.1.直接初始化方式

2.2.使用花括号初始化列表方式(C++11及以上版本)

2.3.make_tuple方式

2.4.使用std::tie()函数方式

3.元素访问

3.1.std::get()方式

3.2.使用结构化绑定(C++17及以上)

3.3.遍历元素

4.获取std::tuple的size

5.获取元组中的元素类型

6.std::forward_as_tuple

7.std::tuple_cat

8.总结


1.简介

        C++11之后引入了std::tuple,俗称元组,元组(tuple)是一种用于组合多个不同类型的值的数据结构。元组可以将不同类型的数据打包在一起,类似于一个容器,可以按照索引顺序访问其中的元素。元组的大小在编译时确定,不支持动态添加或移除元素。std::tuple的定义如下:

template
class tuple;

        std::tuple类似互C语言的结构体,不需要创建结构体而又有结构体的特征,在某些情况下可以取代结构体而使得程序更加简洁,直观。std::tuple理论上可以定义无数多个不同类型的成员变量。特别是你需要在函数之间返回多个值时,或者需要一次性处理多个相关值时,使用元组可以简化代码并提高可读性。

2.创建元组

2.1.直接初始化方式

//显示初始化
std::tuple  a(true, 1, 3.0, "1112222");

2.2.使用花括号初始化列表方式(C++11及以上版本)

//显示初始化
std::tuple  a{true, 1, 3.0, "1112222"};

2.3.make_tuple方式

//显示初始化
std::tuple a = make_tuple(true, 1, 3.0, "1112222");

//隐式初始化
auto b = make_tuple(true, 1, 3.0, "1112222");

2.4.使用std::tie()函数方式

 std::tie定义为:

template
constexpr tuple tie (Types&... args) noexcept;
std::tie生成一个tuple,此tuple包含的分量全部为实参的引用,与make_tuple完全相反。主要用于从tuple中提取数据。例如:
bool myBool;
int myInt;
double myDouble;
std::string myString;

std::tie(myBool, myInt, myDouble, myString) = std::make_tuple(true, 1, 3.0, "1112222");

如果是要忽略某个特定的元素,还可以使用std::ignore来占位,例如:

bool myBool;
std::string myString;

std::tie(myBool, std::ignore, std::ignore, myString) = std::make_tuple(true, 1, 3.0, "1112222");

3.元素访问

3.1.std::get()方式

使用std::get来访问std::tuple特定的元素,如:

std::tuple a(true, 0, "sfsfs");
bool b = std::get<0>(a);
int  c = std::get<1>(a);
std::string d = std::get<2>(a);

std::get<0>(a) = false;
std::get<2>(a) = "s344242";

3.2.使用结构化绑定(C++17及以上)

在C++17及以上版本中,还可以使用结构化绑定 (structured bindings) 的方式来创建和访问元组,可以更方便地访问和操作元组中的元素。结构化绑定允许直接从元组中提取元素并赋值给相应的变量。例如:

std::tuple myTuple(true, false, "Hello");
auto [a, b, c] = myTuple;

这将自动创建变量a、b和c,并将元组中相应位置的值赋给它们。

注意:

元组是不可变的(immutable)一旦创建就不能更改其元素的值。但是,可以通过解构赋值或使用std::get(tuple)来获取元组中的值,并将新的值赋给它们,从而修改元组中的值。

std::tuple不支持迭代器,获取元素的值时只能通过元素索引或tie解包。给定的索引必须是在编译期间就已经确定的,不能在运行期间动态传递,否则会产生编译错误

3.3.遍历元素

        由于 tuple 自身的原因,无法直接遍历,而 get 中 index 必须为运行前设置好的常数
所以 tuple 的遍历需要我们手写,代码如下:

template
struct VisitTuple {
    static void Visit(const Tuple& value) {
        VisitTuple::Visit(value);
        std::cout << ' ' << std::get(value);
        return void();
    }
};
 
template
struct VisitTuple {
    static void Visit(const Tuple& value) {
        std::cout << std::get<0>(value);
        return void();
    }
};
 
template
void TupleVisit(const std::tuple& value) {
    VisitTuple::Visit(value);
}

4.获取std::tuple的size

std::tuple_size的定义如下:

template< class... Types >
struct tuple_size< std::tuple >
    : std::integral_constant { };

提供对 tuple 中元素数量的访问,作为编译时常量表达式,计算std::tuple的大小。例如:

#include 
#include 
 
template 
void test(T value)
{
    int a[std::tuple_size_v]; // 能用于编译时
 
    std::cout << std::tuple_size{} << ' ' // 或运行时
              << sizeof a << ' ' 
              << sizeof value << '\n';
}
 
int main()
{
    test(std::make_tuple(1, 2, 3.14));
}

可能的输出:3 12 16

5.获取元组中的元素类型

std::tuple_element定义如下:

template< std::size_t I, class... Types >
class tuple_element< I, tuple >;

可以使用std::tuple_element::type来获取元组中特定索引位置的元素类型。

#include 
#include 
 
template 
struct type_list
{
   template 
   using type = typename std::tuple_element>::type;
};
 
int main()
{
   std::cout << std::boolalpha;
   type_list::type<2> x = true;
   std::cout << x << '\n';
}

输出:true

6.std::forward_as_tuple

定义如下:

template< class... Types >
tuple forward_as_tuple( Types&&... args ) noexcept;
template< class... Types >
constexpr tuple forward_as_tuple( Types&&... args ) noexcept;

用于接受右值引用数据生成 tuple, 与 std::make_tuple 不同的是它的右值是引用的,当修改其值的时候,原来赋值所用的右值也将修改,实质上就是赋予了它地址。同std::tie一样,也是生成一个全是引用的tuple,不过std::tie只接受左值,而std::forward_as_tuple左值、右值都接受。主要是用于不损失类型属性的转发数据。

注意此处 tuple 内的类型应为引用,否则相当于 std::make_tuple。例如:

signed main(int argc, char *argv[]) {
    int a = 123, c = 456;
    float b = 33.f, d = .155;
 
    std::tuple tu = std::forward_as_tuple(a,b,c,d);
 
    std::get<0> (tu) = 2;
    std::get<1> (tu) = 4.5f;
    std::get<2> (tu) = 234;
    std::get<3> (tu) = 22.f;
 
    std::cout << a << std::endl; // 2
    std::cout << b << std::endl; // 4.5
    std::cout << c << std::endl; // 234
    std::cout << d << std::endl; // 22
    return 0;
}

注意:若参数是临时量,则 forward_as_tuple 不延续其生存期;必须在完整表达式结尾前使用它们。

7.std::tuple_cat

        此函数接受多个tuple作为参数,然后返回一个tuple。返回的这个tuple将tuple_cat的参数中的tuple的所有元素按所属的tuple在参数中的顺序以及其在tuple中的顺序排列成一个新的tuple。新tuple中元素的类型与参数中的tuple中的元素的类型完全一致。例如:

#include 
#include 
#include 
 
// 打印任何大小 tuple 的辅助函数
template
struct TuplePrinter
{
    static void print(const Tuple& t)
    {
        TuplePrinter::print(t);
        std::cout << ", " << std::get(t);
    }
};
 
template
struct TuplePrinter
{
    static void print(const Tuple& t) 
    {
        std::cout << std::get<0>(t);
    }
};
 
template
void print(const std::tuple& t) 
{
    std::cout << "(";
    TuplePrinter::print(t);
    std::cout << ")\n";
}
// 辅助函数结束
 
int main()
{
    std::tuple t1(10, "Test", 3.14);
    int n = 7;
    auto t2 = std::tuple_cat(t1, std::make_tuple("Foo", "bar"), t1, std::tie(n));
    n = 10;
    print(t2);
}

输出:(10, Test, 3.14, Foo, bar, 10, Test, 3.14, 10)

8.总结

std::tuple 是一种重要的数据结构,可以用于在函数参数之间传递数据,也可以作为函数的返回值。在实际项目中,我们可以灵活地使用 std::tuple,以简化代码,提高程序的性能。

后面我们将继续通过分析std::tuple源码的方式来更深层次讲解它的实现原理,值得期待哦。。。

参考:std::tuple - cppreference.com

你可能感兴趣的:(#C++基础,c++,开发语言)