- C++常用库交叉编译方法(一)(环境构建和Qt以及Boost)
原文链接欢迎大家对于本站的访问-AsterCasc前言首先这里建议从Ubuntu20.04镜像开始,目前相对最稳定的版本,无论是CentOS还是其他版本的Ubuntu多多少少都会遇到各种很烦的问题,虽然说不是解决不了,但是从Ubuntu20.04容器镜像开始是最节省时间的方式,Docker默认情况下会让容器使用宿主机的大部分资源,包括CPU和内存,虽然具体的占用情况取决于宿主机的硬件资源和Dock
- 【亲测免费】 CatBoost 教程项目使用指南
CatBoost教程项目使用指南tutorials项目地址:https://gitcode.com/gh_mirrors/tutorials1/tutorials1.项目介绍CatBoost是一个高效、灵活且易于使用的梯度提升库,特别适用于处理分类特征。它由Yandex开发,广泛应用于机器学习和数据科学领域。CatBoost提供了丰富的功能,包括自动处理分类特征、支持GPU训练、内置的交叉验证和模
- 深入解析与彻底解决 Android 集成 Flutter Boost 时页面闪烁问题
二蛋和他的大花
flutterandroidflutter
在混合开发中,将Flutter模块集成到Android应用中是一种常见的需求。然而,许多开发者在集成过程中遇到了页面闪烁的问题,这严重影响了用户体验。本文将深入分析这一问题,并提供多种解决方案,帮助开发者彻底解决这一难题。一、页面闪烁问题分析集成方式:Flutter模块集成在Android的Fragment中。从原生页面返回Flutter页面时,带有动画的组件出现闪烁。问题表现:从原生页面返回Fl
- python和C++相互调用使用
妄想出头的工业炼药师
c++开发语言
结论:首选PyBind11:综合性能、易用性最佳(GitHub⭐48k+)优先考虑Cython:涉及大量科学计算或已有Cython代码避免Boost.Python(历史包袱重)和SWIG(配置复杂),除非维护旧项目。python调用C++接口C++调用python接口在C++中使用Python库,特别是使用pybind11,是一个非常强大的方法,可以让你在C++项目中轻松地利用Python的强大功
- Outcome 使用教程
Outcome使用教程outcomeProvidesverylightweightoutcomeandresult(non-Boostedition)项目地址:https://gitcode.com/gh_mirrors/ou/outcome1.项目介绍Outcome是一个C++14库,用于报告和处理函数失败。它可以作为异常处理机制的替代或补充。在某些场景下,使用C++的异常处理可能不合适,例如异
- 【Elasticsearch】自定义评分检索
G皮T
#Elasticelasticsearch大数据自定义评分查询检索_score搜索引擎
自定义评分检索1.自定义评分2.为什么需要自定义评分3.搜索结果相关度4.影响相关度评分的查询子句5.控制相关度评分的方法5.1FunctionScoreQuery5.1.1基础查询部分5.1.2评分函数部分(functions数组)第一个函数:品牌加权第二个函数:销量因子第三个函数:时间衰减5.1.3评分组合方式score_modeboost_mode5.1.4整体效果5.2使用Boosting
- Python机器学习与深度学习:决策树、随机森林、XGBoost与LightGBM、迁移学习、循环神经网络、长短时记忆网络、时间卷积网络、自编码器、生成对抗网络、YOLO目标检测等
WangYan2022
机器学习/深度学习Python机器学习深度学习随机森林迁移学习
融合最新技术动态与实战经验,旨在系统提升以下能力:①掌握ChatGPT、DeepSeek等大语言模型在代码生成、模型调试、实验设计、论文撰写等方面的实际应用技巧②深入理解深度学习与经典机器学习算法的关联与差异,掌握其理论基础③熟练运用PyTorch实现各类深度学习模型,包括迁移学习、循环神经网络(RNN)、长短时记忆网络(LSTM)、时间卷积网络(TCN)、自编码器、生成对抗网络(GAN)、YOL
- Docker 容器全生命周期操作指南
以下是Docker容器全生命周期操作指南,按步骤清晰划分,涵盖从镜像加载到容器销毁的完整流程:一、镜像加载与验证1.从.tar文件加载镜像sudodockerload-iubuntu18.04-boost1.88-cmake3.27-git_1.0.tar2.查看已加载的镜像sudodockerimages输出示例:REPOSITORYTAGIMAGEIDCREATEDSIZEubuntu18.0
- 深度剖析:OPENPPP2 libtcpip 实现原理与架构设计
liulilittle
网络智能路由器c++开发语言tcptcp/ip通信
️一、核心架构设计(可视化图表)1.1整体架构图物理网络TAP/TUN设备原始数据包libtcpip输入层LWIP协议栈Netstack转换层Boost.AsioSocket目标服务libtcpip输出层1.2分层架构图内核空间用户空间内核网络栈IP协议处理网络接口层TCP/UDP协议栈Socket转换层系统Socket接口物理网络⚙️二、LWIP协议栈集成剖析2.1LWIP定制化实现//内存管理
- Boostrap方法的理解及应用
Xiaofei@IDO
统计学概率论机器学习数据挖掘
1、Boostrap介绍1.1概念性解释Boostrap统计学方法是一种非参数检验方法,用于估计各种统计量的置信区间。Boostrap计算步骤简单的描述为:通过有放回的数据集的重采样,产生一系列的待检验统计量的Boostrap经验分布。基于该分布,计算标准误差,构建置信区间,并对多种类型的样本进行统计信息和假设检验。Boostrap统计学方法使用范围比较广,因为它不需要假定数据服从特定的理论分布(
- 【集成学习】Bagging、Boosting、Stacking算法详解
文章目录1.相关算法详解:2.算法详细解释:2.1Bagging:2.2Boosting:2.3Stacking:2.4K-foldMulti-levelStacking:集成学习(EnsembleLearning)是一种通过结合多个模型的预测结果来提高整体预测性能的技术。它通过将多个学习器的结果集成起来,使得最终的模型性能更强,具有更好的泛化能力。常见的集成学习框架包括:Bagging、Boos
- 机器学习-三大SOTA Boosting算法总结和调优
小新学习屋
机器学习机器学习boosting集成学习决策树人工智能
参考书籍:《机器学习公式推导和代码实现》书籍页码:P197~205简介除了深度学习适用的文本、图像、语音、视频等非结构化数据,对于训练样本较少的结构化数据,Boosting算法仍是第一选择。XGBoost、LightGBM、CatBoost是目前经典的SOTABoosting算法算法对比维度XGBoostLightGBMCatBoos说明算法的继承性是对GBDT的改进是对XGBoost的改进是对X
- Boost.Asio 的 TCP 通信教程
FHKHH
网络编程tcp/ip网络协议网络
一、引言本教程将详细介绍如何使用Boost.Asio库实现一个简单的TCP通信示例,包括服务器端和客户端的代码编写、编译以及运行流程。同时,我们会对通信过程中的各个关键步骤进行详细讲解,帮助读者理解TCP通信在Boost.Asio中的实现方式。后续如果需要扩展功能,例如并发处理多个客户端连接或使用异步通信等,可以在此基础上进行修改。二、准备工作确保系统中已安装Boost库。确保编译器(如g++)能
- Boost.Asio 同步读写操作详解
Boost.Asio同步读写操作详解Boost.Asio是一个高效的C++网络和底层I/O库,提供了多种API用于同步和异步数据传输。本文将详细介绍同步操作及其具体实现,包括write_some、send、write、read_some、receive、read和read_until等。1.同步写:write_some功能:将指定数量的字节写入到套接字。如果发送缓冲区已满,则只写入一部分数据并返回
- 用sklearn库中的算法对数据集进行训练和auc评估(个人学习笔记)
ZD困困困
python机器学习
本文为个人学习笔记,仅供学习参考,欢迎讨论,要是有哪里写的不对或有疑问的欢迎讨论。题目:运用已给数据集进行模型训练,使用逻辑回归、决策树、随机森林和AdaBoost几个算法进行训练,并打印各个算法训练后的auc评价指标。文章目录1.导入数据集①read_csv():读取数据并以某字符分隔。②merge():合并③drop():删除行或列④tolist():将数组或矩阵转换为列表⑤train_tes
- 森林的智慧:随机森林与集成学习的民主之道
田园Coder
人工智能科普人工智能科普
当约阿夫·弗罗因德和罗伯特·沙皮尔提出的AdaBoost算法在90年代末期以其强大的预测精度震惊机器学习界,展示了“团结弱者为强者”的集成魅力时,另一种集成思想也在悄然孕育。这种思想同样信奉“众人拾柴火焰高”,但走的是一条与AdaBoost截然不同的路径:它不执着于反复调整数据权重去“关注”被前序模型分错的困难样本,而是致力于创造尽可能多样化的模型,然后让这些模型平等地投票。它的核心哲学是:如果每
- 服务器pci数据捕获和信号处理 感叹号,PCI数据捕获和信号处理控制器win7驱动
这是PCI数据捕获和信号处理控制器win7驱动下载,有些电脑在安装了系统后会在设备管理器中出现PCI数据捕获和信号处理控制器黄色感叹号提示,此时需要安装“IntelTurboBoost”驱动软件。软件介绍有时候我们装完系统的时候,各种驱动都安装完毕了,然后发现系统属性里面的设备管理器其他设备—PCI数据捕获和信号处理器控制器上还是有个问号,此款驱动就是解决这个问题的。PCI数据捕获和信号处理控制器
- 机器学习,支持向量机svm和决策树xgboost介绍
suixinm
支持向量机机器学习决策树
支持向量机(SVM)和XGBoost都是非常强大且应用广泛的机器学习算法,但它们基于不同的原理,各有其优势和劣势,适用于不同的场景。以下是两者的主要区别和优劣势对比:1.核心思想与模型类型:SVM:核心思想:找到一个最优的超平面(在特征空间中),将不同类别的样本分隔开,并且使得该超平面到两类样本中最近的样本点(支持向量)的距离(间隔)最大化。核心是几何间隔最大化。模型类型:单个模型(虽然是核方法,
- 【机器学习第四期(Python)】LightGBM 方法原理详解
WW、forever
机器学习原理及代码实现机器学习python人工智能
LightGBM概述一、LightGBM简介二、LightGBM原理详解⚙️核心原理LightGBM的主要特点三、LightGBM实现步骤(Python)可调参数推荐完整案例代码(回归任务+可视化)参考LightGBM是由微软开源的基于梯度提升框架(GBDT)的机器学习算法,专为高性能、高效率设计,适用于大规模数据处理任务。它在准确率、训练速度和资源使用上都优于传统GBDT实现(如XGBoost)
- 现代C++ 文件系统库
mxpan
c++c++
一、std::filesystem的前世今生C++11之前,文件系统操作依赖于平台特定的API(如Windows的CreateFile或POSIX的open),缺乏统一接口。C++17正式将std::filesystem纳入标准库,该库最初由Boost.Filesystem演化而来,提供了跨平台的文件系统操作能力。核心优势:跨平台兼容性:一次编写,支持Windows、Linux、macOS等主流平
- 人工智能大模型原理与应用实战:大模型在金融风控中的应用
AI天才研究院
LLM大模型落地实战指南大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
文章目录人工智能大模型原理与应用实战:大模型在金融风控中的应用01.背景介绍1.1金融风控的挑战1.2大模型的优势2.核心概念与联系2.1大模型在金融风控中的应用场景2.2大模型与传统风控技术的结合3.核心算法原理具体操作步骤3.1基于大模型的欺诈检测3.2基于大模型的信用评估4.数学模型和公式详细讲解举例说明4.1逻辑回归模型4.2XGBoost模型5.项目实践:代码实例和详细解释说明5.1基于
- Python打卡:Day24
剑桥折刀s
python打卡python
importpandasaspdimportnumpyasnpimportreimportxgboostasxgbfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metricsimportclassification_report,confusion_matrix,accuracy_score,precision_score
- 【机器学习算法】XGBoost原理
一、基本内容基本内容:GBDT的基础上,在损失函数上加入树模型复杂度的正则项与GBDT一样,也是使用新的弱学习器拟合残差(当前模型负梯度,残差方向)GBDT损失函数Loss=∑i=1NL(yi,yit)Loss=\sum_{i=1}^{N}L(y_i,y_i^{t})Loss=i=1∑NL(yi,yit)XGboost损失函数Loss=∑i=1SL(yi,yit)+∑j=1NΩ(fj))Loss=
- CMake指令:find_package
流星雨爱编程
#CMake工具c++开发语言设计模式自动化编译工具CMake跨平台编译
目录1.简介2.搜索模式3.常用参数4.工作流程5.内置模块示例:FindBoost.cmake6.自定义模块文件(Find.cmake)7.模块模式vs配置模式8.总结相关链接1.简介查找模块(findmodule)是一系列用于搜索第三方依赖软件包(包括库或可执行文件)的模块。对查找模块的引用一般不使用include命令,而是使用find_package命令。基本语法find_package([
- 【CMake基础入门教程】第七课:查找并使用第三方库(以 find_package() 为核心)
奇异果冻
CMake入门学习CMakebashc++开发语言
很好!我们进入第七课:查找并使用第三方库(以find_package()为核心)。本课目标学会使用CMake的find_package()引入外部库;理解find_package背后的机制(Config模式/Module模式);以常用库如OpenCV/Qt/Boost为例进行实战;掌握target_link_libraries()的现代CMake使用方式。一、什么是find_package()?C
- 【机器学习第二期(Python)】优化梯度提升决策树 XGBoost
WW、forever
深度学习原理及代码实现机器学习python决策树
优化梯度提升决策树XGBoost一、XGBoost简介二、原理详解2.1基础思想:改进版GBDT2.2目标函数2.3二阶泰勒展开优化2.4树结构优化三、XGBoost实现步骤(Python)可调参数推荐完整案例代码(回归任务+可视化)参考梯度提升决策树GBDT的原理及Python代码实现可参考另一博客-【机器学习第一期(Python)】梯度提升决策树GBDT。XGBoost(ExtremeGrad
- LightGBM:极速梯度提升机——结构化数据建模的终极武器
大千AI助手
人工智能Python#OTHER随机森林算法机器学习决策树人工智能GBDTLightGBM
基于直方图与Leaf-wise生长的高效GBDT实现,横扫Kaggle与工业场景一、为什么需要LightGBM?GBDT的瓶颈传统梯度提升树(如XGBoost)在处理海量数据时面临两大痛点:训练速度慢:需预排序特征&层次生长(Level-wise)内存消耗高:存储特征值与分裂点信息LightGBM的诞生微软亚洲研究院于2017年开源,核心目标:✅训练效率提升10倍✅内存占用降低50%✅保持与XGB
- Boosting:从理论到实践——集成学习中的偏差征服者
大千AI助手
人工智能Python#OTHER集成学习boosting机器学习tree人工智能ML
核心定位:一种通过串行训练弱学习器、自适应调整数据权重,将多个弱模型组合成强模型的集成学习框架,专注于降低预测偏差。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、Boosting的本质目标:将一系列弱学习器(仅比随机猜测略好,如浅层决策树)组合成强学习器核心思想:错误驱动学习:后续模型重点修正
- 怎样在pycham上安装XGBoost(windows操作系统)
youxiazzz12
综合大数据深度学习xgboost
搞数据分析、挖掘的时候,网上的代码来了个看到下面的红色下划线,心里一咯噔,最怕这种导入包的问题,又要开始搞配置了。先运行代码看看吧,果然报错:ModuleNotFoundError:Nomodulenamed'xgboost'看来还是得安装这个xgboost。经历了各种痛苦的摸索,终于搞定,还是汇总一下吧。小白的摸索太过痛苦了,汇总一下大家共勉。弯路就不放出来了,全是泪。直接讲正确路径有一些初步准
- XGBoost算法原理及Python实现
法号清水
算法python开发语言
一、概述 XGBoost是一种基于梯度提升框架的机器学习算法,它通过迭代地训练一系列决策树来构建模型。核心思想是通过不断地在已有模型的基础上,拟合负梯度方向的残差(真实值与预测值的差)来构建新的弱学习器,达到逐步优化模型的目的。 XGBoost在构建决策树时,利用了二阶导数信息。在损失函数的优化过程中,不仅考虑了一阶导数(梯度),还引入了二阶导数(海森矩阵),这使得算法能够更精确地找到损失函数
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite