python 视频硬字幕去除 内嵌字幕去除工具vsr

项目简介

开源地址:https://github.com/YaoFANGUK/video-subtitle-remover

Video-subtitle-remover (VSR) 是一款基于AI技术,将视频中的硬字幕去除的软件。
主要实现了以下功能:

  • 无损分辨率将视频中的硬字幕去除,生成去除字幕后的文件
  • 通过超强AI算法模型,对去除字幕文本的区域进行填充(非相邻像素填充与马赛克去除)
  • 支持自定义字幕位置,仅去除定义位置中的字幕(传入位置)
  • 支持全视频自动去除所有文本(不传入位置)
  • 支持多选图片批量去除水印文本

vsr

直接下载压缩包解压运行,如果不能运行再按照下面的教程,尝试源码安装conda环境运行

下载地址:

Windows GPU版本v1.1.0(GPU):

  • 百度网盘: vsr_windows_gpu_v1.1.0.zip 提取码:vsr1

  • Google Drive: vsr_windows_gpu_v1.1.0.zip

仅供具有Nvidia显卡的用户使用(AMD的显卡不行)

演示

  • GUI版:点击查看演示视频

源码使用说明

无Nvidia显卡请勿使用本项目,最低配置:

GPU:GTX 1060或以上显卡

CPU: 支持AVX指令集

1. 下载安装Miniconda
  • Windows: Miniconda3-py38_4.11.0-Windows-x86_64.exe

  • Linux: Miniconda3-py38_4.11.0-Linux-x86_64.sh

2. 创建并激活虚机环境

(1)切换到源码所在目录:

cd <源码所在目录>

例如:如果你的源代码放在D盘的tools文件下,并且源代码的文件夹名为video-subtitle-remover,就输入 cd D:/tools/video-subtitle-remover-main

(2)创建激活conda环境

conda create -n videoEnv python=3.8

conda activate videoEnv

3. 安装依赖文件

请确保你已经安装 python 3.8+,使用conda创建项目虚拟环境并激活环境 (建议创建虚拟环境运行,以免后续出现问题)

  • 安装CUDA和cuDNN

    Linux用户

    (1) 下载CUDA 11.7
    wget https://developer.download.nvidia.com/compute/cuda/11.7.0/local_installers/cuda_11.7.0_515.43.04_linux.run
    
    (2) 安装CUDA 11.7
    sudo sh cuda_11.7.0_515.43.04_linux.run
    

    1. 输入accept

    2. 选中CUDA Toolkit 11.7(如果你没有安装nvidia驱动则选中Driver,如果你已经安装了nvidia驱动请不要选中driver),之后选中install,回车

    3. 添加环境变量

    在 ~/.bashrc 加入以下内容

    # CUDA
    export PATH=/usr/local/cuda-11.7/bin${PATH:+:${PATH}}
    export LD_LIBRARY_PATH=/usr/local/cuda-11.7/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
    

    使其生效

    source ~/.bashrc
    
    (3) 下载cuDNN 8.4.1

    国内:cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive.tar.xz 提取码:57mg

    国外:cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive.tar.xz

    (4) 安装cuDNN 8.4.1
     tar -xf cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive.tar.xz
     mv cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive cuda
     sudo cp ./cuda/include/* /usr/local/cuda-11.7/include/
     sudo cp ./cuda/lib/* /usr/local/cuda-11.7/lib64/
     sudo chmod a+r /usr/local/cuda-11.7/lib64/*
     sudo chmod a+r /usr/local/cuda-11.7/include/*
    

    Windows用户

    (1) 下载CUDA 11.7

    cuda_11.7.0_516.01_windows.exe

    (2) 安装CUDA 11.7
    (3) 下载cuDNN 8.2.4

    cudnn-windows-x64-v8.2.4.15.zip

    (4) 安装cuDNN 8.2.4

    将cuDNN解压后的cuda文件夹中的bin, include, lib目录下的文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\对应目录下

  • 安装GPU版本Paddlepaddle:

    • windows:

      python -m pip install paddlepaddle-gpu==2.4.2.post117 -f https://www.paddlepaddle.org.cn/whl/windows/mkl/avx/stable.html
      
      
    • Linux:

      python -m pip install paddlepaddle-gpu==2.4.2.post117 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html
      
      
  • 安装GPU版本Pytorch:

    conda install pytorch==2.0.1 torchvision==0.15.2 pytorch-cuda=11.7 -c pytorch -c nvidia
    
    

    或者使用

    pip install torch==2.0.1 torchvision==0.15.2 --index-url https://download.pytorch.org/whl/cu117
    
    
  • 安装其他依赖:

    pip install -r requirements.txt
    
    
4. 运行程序
  • 运行图形化界面
python gui.py

  • 运行命令行版本(CLI)
python ./backend/main.py

常见问题

  1. CondaHTTPError

将项目中的.condarc放在用户目录下(C:/Users/<你的用户名>),如果用户目录已经存在该文件则覆盖

解决方案:https://zhuanlan.zhihu.com/p/260034241

  1. 7z文件解压错误

解决方案:升级7-zip解压程序到最新版本

#学习资源推荐

零基础Python学习资源介绍

Python学习路线汇总
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(学习教程文末领取哈)
在这里插入图片描述

Python必备开发工具
在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

Python学习视频600合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述

实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

100道Python练习题
检查学习结果。
在这里插入图片描述
面试刷题
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

资料领取

上述这份完整版的Python全套学习资料已经上传CSDN官方,朋友们如果需要可以微信扫描下方CSDN官方认证二维码输入“领取资料” 即可领取。

你可能感兴趣的:(python,音视频,开发语言)