为避免树的高度增长过快,降低二叉搜索树的性能,规定在插入和删除二叉树结点时,要保证任意结点的左、右子树高度差的绝对值不超过 1 1 1,将这样的二叉树称为平衡二叉树(Balanced Binary Tree), 简称平衡树。定义结点左子树与右子树的高度差为该结点的平衡因子,则平衡二叉树结点的平衡因子的值只可能是 $ -1$、 0 0 0 或 1 1 1。
private static class Node implements Comparable<Node> {
public int data;
public int height;
public Node left;
public Node right;
public Node(int data) {
this(data, null, null);
}
@Override
public String toString() {
return new StringJoiner(", ", Node.class.getSimpleName() + "[", "]")
.add("data=" + data)
.toString();
}
public Node(int data, Node left, Node right) {
this.data = data;
this.left = left;
this.right = right;
this.height = 0;
}
@Override
public int compareTo(Node node) {
return data - node.data;
}
}
在说明旋转之前,首先要假定一个基本事实,即空结点的高度是 0 0 0,单结点高度为 1 1 1:
private static int height(Node node) {
return node == null ? 0 : node.height;
}
当平衡二叉树进行插入(或删除)一个结点时,将会导致子树的高度加 1 1 1 或减 1 1 1,有可能造成平衡性的破坏,这时就要通过旋转来保证 AVL 树的平衡性,假设平衡性在 A 结点开始破坏,即 A 左右子树高度差为 2 2 2,主要有以下 4 种情况:
private static Node LL(Node imbalance) {
Node balance = imbalance.left;
imbalance.left = balance.right;
balance.right = imbalance;
imbalance.height = Math.max(height(imbalance.left), height(imbalance.right)) + 1;
balance.height = Math.max(height(balance.left), height(balance.right)) + 1;
return balance;
}
private static Node RR(Node imbalance) {
Node balance = imbalance.right;
imbalance.right = balance.left;
balance.left = imbalance;
imbalance.height = Math.max(height(imbalance.left), height(imbalance.right)) + 1;
balance.height = Math.max(height(balance.left), height(balance.right)) + 1;
return balance;
}
private static Node LR(Node imbalance) {
imbalance.left = RR(imbalance.left);
return LL(imbalance);
}
private static Node RL(Node imbalance) {
imbalance.right = LL(imbalance.right);
return RR(imbalance);
}
public void insert(int key) {
root = insert(root, key);
}
private static Node insert(Node root, int key) {
if (root == null) {
root = new Node(key);
} else {
if (key < root.data) {
root.left = insert(root.left, key);
if (height(root.left) - height(root.right) == 2) {
root = key < root.left.data ? LL(root) : LR(root);
}
} else if (key > root.data) {
root.right = insert(root.right, key);
if (height(root.right) - height(root.left) == 2) {
root = key < root.right.data ? RL(root) : RR(root);
}
} else {
System.out.println("元素 " + key + " 插入失败");
}
}
root.height = Math.max(height(root.left), height(root.right)) + 1;
return root;
}
public void remove(int key) {
root = remove(root, key);
}
private static Node remove(Node root, int key) {
if (root == null) {
System.out.println("平衡二叉树空,无法删除!");
} else {
if (key < root.data) {
root.left = remove(root.left, key);
if (height(root.right) - height(root.left) == 2) {
Node right = root.right;
root = height(right.left) > height(right.right) ? RL(root) : RR(root);
}
} else if (key > root.data) {
root.right = remove(root.right, key);
if (height(root.left) - height(root.right) == 2) {
Node left = root.left;
root = height(left.left) > height(left.right) ? LL(root) : LR(root);
}
} else {
if (root.left != null && root.right != null) {
if (height(root.left) > height(root.right)) {
Node predecessor = predecessor(root);
root.data = predecessor.data;
root.left = remove(root.left, predecessor.data);
} else {
Node successor = successor(root);
root.data = successor.data;
root.right = remove(root.right, successor.data);
}
} else {
root = root.left == null ? root.right : root.left;
}
}
}
return root;
}
// 查找以该结点为根的左子树中的最大结点
private static Node predecessor(Node node) {
if (node.left == null) {
return null;
}
node = node.left;
while (node.right != null) {
node = node.right;
}
return node;
}
// 查找以该结点为根的右子树中的最小结点
private static Node successor(Node node) {
if (node.right == null) {
return null;
}
node = node.right;
while (node.left != null) {
node = node.left;
}
return node;
}
输出结果:
元素 23 插入失败
45
/ \
17 65
/ \ / \
9 23 53 78
\
87
========================================
45
/ \
17 65
/ / \
9 53 78
\
87
========================================
65
/ \
45 78
/ \ \
9 53 87
源码:
package com.ice.avl;
import java.util.ArrayDeque;
import java.util.Deque;
import java.util.StringJoiner;
import java.util.function.Consumer;
/**
* @author ice
* @blog https://yilei.space
* @description
* @create 2022-02-24 15:55:11
*/
public class AVL {
public static void main(String[] args) {
AVL tree = new AVL();
tree.insert(53);
tree.insert(17);
tree.insert(9);
tree.insert(45);
tree.insert(23);
tree.insert(23);
tree.insert(78);
tree.insert(65);
tree.insert(87);
show(tree.getRoot());
System.out.println("========================================");
tree.remove(23);
show(tree.getRoot());
System.out.println("========================================");
tree.remove(17);
show(tree.getRoot());
}
private Node root;
public Node getRoot() {
return root;
}
public void inOrder(Consumer<Node> consumer) {
if (root == null) return;
Node node = root;
Deque<Node> deque = new ArrayDeque<>();
while (node != null || !deque.isEmpty()) {
while (node != null) {
deque.push(node);
node = node.left;
}
node = deque.pop();
consumer.accept(node);
node = node.right;
}
}
public Node search(int key) {
Node node = root;
while (node != null && node.data != key) {
node = key < node.data ? node.left : node.right;
}
return node;
}
public void remove(int key) {
root = remove(root, key);
}
private static Node remove(Node root, int key) {
if (root == null) {
System.out.println("平衡二叉树空,无法删除!");
} else {
if (key < root.data) {
root.left = remove(root.left, key);
if (height(root.right) - height(root.left) == 2) {
Node right = root.right;
root = height(right.left) > height(right.right) ? RL(root) : RR(root);
}
} else if (key > root.data) {
root.right = remove(root.right, key);
if (height(root.left) - height(root.right) == 2) {
Node left = root.left;
root = height(left.left) > height(left.right) ? LL(root) : LR(root);
}
} else {
if (root.left != null && root.right != null) {
if (height(root.left) > height(root.right)) {
Node predecessor = predecessor(root);
root.data = predecessor.data;
root.left = remove(root.left, predecessor.data);
} else {
Node successor = successor(root);
root.data = successor.data;
root.right = remove(root.right, successor.data);
}
} else {
root = root.left == null ? root.right : root.left;
}
}
}
return root;
}
// 查找以该结点为根的左子树中的最大结点
private static Node predecessor(Node node) {
if (node.left == null) {
return null;
}
node = node.left;
while (node.right != null) {
node = node.right;
}
return node;
}
// 查找以该结点为根的右子树中的最小结点
private static Node successor(Node node) {
if (node.right == null) {
return null;
}
node = node.right;
while (node.left != null) {
node = node.left;
}
return node;
}
public void insert(int key) {
root = insert(root, key);
}
private static Node insert(Node root, int key) {
if (root == null) {
root = new Node(key);
} else {
if (key < root.data) {
root.left = insert(root.left, key);
if (height(root.left) - height(root.right) == 2) {
root = key < root.left.data ? LL(root) : LR(root);
}
} else if (key > root.data) {
root.right = insert(root.right, key);
if (height(root.right) - height(root.left) == 2) {
root = key < root.right.data ? RL(root) : RR(root);
}
} else {
System.out.println("元素 " + key + " 插入失败");
}
}
root.height = Math.max(height(root.left), height(root.right)) + 1;
return root;
}
private static int height(Node node) {
return node == null ? 0 : node.height;
}
private static Node LL(Node imbalance) {
Node balance = imbalance.left;
imbalance.left = balance.right;
balance.right = imbalance;
imbalance.height = Math.max(height(imbalance.left), height(imbalance.right)) + 1;
balance.height = Math.max(height(balance.left), height(balance.right)) + 1;
return balance;
}
private static Node RR(Node imbalance) {
Node balance = imbalance.right;
imbalance.right = balance.left;
balance.left = imbalance;
imbalance.height = Math.max(height(imbalance.left), height(imbalance.right)) + 1;
balance.height = Math.max(height(balance.left), height(balance.right)) + 1;
return balance;
}
private static Node LR(Node imbalance) {
imbalance.left = RR(imbalance.left);
return LL(imbalance);
}
private static Node RL(Node imbalance) {
imbalance.right = LL(imbalance.right);
return RR(imbalance);
}
private static class Node implements Comparable<Node> {
public int data;
public int height;
public Node left;
public Node right;
public Node(int data) {
this(data, null, null);
}
@Override
public String toString() {
return new StringJoiner(", ", Node.class.getSimpleName() + "[", "]")
.add("data=" + data)
.toString();
}
public Node(int data, Node left, Node right) {
this.data = data;
this.left = left;
this.right = right;
this.height = 0;
}
@Override
public int compareTo(Node node) {
return data - node.data;
}
}
// 用于获得树的层数
public static int getTreeDepth(Node root) {
return root == null ? 0 : (1 + Math.max(getTreeDepth(root.left), getTreeDepth(root.right)));
}
private static void writeArray(Node currNode, int rowIndex, int columnIndex, String[][] res, int treeDepth) {
// 保证输入的树不为空
if (currNode == null) return;
// 先将当前结点保存到二维数组中
res[rowIndex][columnIndex] = String.valueOf(currNode.data);
// 计算当前位于树的第几层
int currLevel = (rowIndex + 1) / 2;
// 若到了最后一层,则返回
if (currLevel == treeDepth) return;
// 计算当前行到下一行,每个元素之间的间隔(下一行的列索引与当前元素的列索引之间的间隔)
int gap = treeDepth - currLevel - 1;
// 对左儿子进行判断,若有左儿子,则记录相应的"/"与左儿子的值
if (currNode.left != null) {
res[rowIndex + 1][columnIndex - gap] = "/";
writeArray(currNode.left, rowIndex + 2, columnIndex - gap * 2, res, treeDepth);
}
// 对右儿子进行判断,若有右儿子,则记录相应的"\"与右儿子的值
if (currNode.right != null) {
res[rowIndex + 1][columnIndex + gap] = "\\";
writeArray(currNode.right, rowIndex + 2, columnIndex + gap * 2, res, treeDepth);
}
}
/*
树的结构示例:
1
/ \
2 3
/ \ / \
4 5 6 7
*/
public static void show(Node root) {
if (root == null) System.out.println("EMPTY!");
// 得到树的深度
int treeDepth = getTreeDepth(root);
// 最后一行的宽度为2的(n - 1)次方乘3,再加1
// 作为整个二维数组的宽度
int arrayHeight = treeDepth * 2 - 1;
int arrayWidth = (2 << (treeDepth - 2)) * 3 + 1;
// 用一个字符串数组来存储每个位置应显示的元素
String[][] res = new String[arrayHeight][arrayWidth];
// 对数组进行初始化,默认为一个空格
for (int i = 0; i < arrayHeight; i++) {
for (int j = 0; j < arrayWidth; j++) {
res[i][j] = " ";
}
}
// 从根结点开始,递归处理整个树
// res[0][(arrayWidth + 1)/ 2] = (char)(root.val + '0');
writeArray(root, 0, arrayWidth / 2, res, treeDepth);
// 此时,已经将所有需要显示的元素储存到了二维数组中,将其拼接并打印即可
for (String[] line : res) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < line.length; i++) {
sb.append(line[i]);
if (line[i].length() > 1 && i <= line.length - 1) {
i += line[i].length() > 4 ? 2 : line[i].length() - 1;
}
}
System.out.println(sb);
}
}
}