☆* o(≧▽≦)o *☆嗨~我是小奥
个人博客:小奥的博客
CSDN:个人CSDN
Github:传送门
面经分享(牛客主页):传送门
文章作者技术和水平有限,如果文中出现错误,希望大家多多指正!
如果觉得内容还不错,欢迎点赞收藏关注哟! ❤️
本地事务,也就是传统的单机事务。在传统数据库事务中,必须要满足四个原则:
分布式事务,就是指不是在单个服务或单个数据库架构下,产生的事务,例如:
在数据库水平拆分、服务垂直拆分之后,一个业务操作通常要跨多个数据库、服务才能完成。例如电商行业中比较常见的下单付款案例,包括下面几个行为:
完成上面的操作需要访问三个不同的微服务和三个不同的数据库。
订单的创建、库存的扣减、账户扣款在每一个服务和数据库内是一个本地事务,可以保证ACID原则。
但是当我们把三件事情看做一个"业务",要满足保证“业务”的原子性,要么所有操作全部成功,要么全部失败,不允许出现部分成功部分失败的现象,这就是分布式系统下的事务了。
解决分布式事务问题,需要一些分布式系统的基础知识作为理论指导。
1998年,加州大学的计算机科学家 Eric Brewer 提出,分布式系统有三个指标。
它们的第一个字母分别是 C、A、P。
Eric Brewer 说,这三个指标不可能同时做到。这个结论就叫做 CAP 定理。
Consistency(一致性):用户访问分布式系统中的任意节点,得到的数据必须一致。
比如现在有两个数据库节点,其中初始数据是一致的:
Availability (可用性):用户访问集群中的任意健康节点,必须能得到响应,而不是超时或拒绝。
比如有一个集群有三个节点,访问任何一个都可以及时得到响应。当有部分节点因为网络故障或其它原因无法访问时,代表节点不可用。
Partition(分区):因为网络故障或其它原因导致分布式系统中的部分节点与其它节点失去连接,形成独立分区。
Tolerance(容错):在集群出现分区时,整个系统也要持续对外提供服务。
在分布式系统中,系统间的网络不能100%保证健康,一定会有故障的时候,而服务有必须对外保证服务。因此Partition Tolerance不可避免。
也就是说,在P一定会出现的情况下,A和C之间只能实现一个。
BASE理论是对CAP的一种解决思路,包含三个思想:
分布式事务最大的问题是各个子事务的一致性问题,因此可以借鉴CAP定理和BASE理论,有两种解决思路:
AP模式:各子事务分别执行和提交,允许出现结果不一致,然后采用弥补措施恢复数据即可,实现最终一致。
CP模式:各个子事务执行后互相等待,同时提交,同时回滚,达成强一致。但事务等待过程中,处于弱可用状态。
但不管是哪一种模式,都需要在子系统事务之间互相通讯,协调事务状态,也就是需要一个事务协调者(TC)。
Seata是 2019 年 1 月份蚂蚁金服和阿里巴巴共同开源的分布式事务解决方案。致力于提供高性能和简单易用的分布式事务服务,为用户打造一站式的分布式解决方案。
官网地址:http://seata.io/,其中的文档、播客中提供了大量的使用说明、源码分析。
Seata事务管理中有三个重要的角色:
整体架构如图:
Seata基于上述架构提供了四种不同的分布式事务解决方案:
无论哪种方案,都离不开TC,也就是事务的协调者。
引入依赖
<dependency>
<groupId>com.alibaba.cloudgroupId>
<artifactId>spring-cloud-starter-alibaba-seataartifactId>
<exclusions>
<exclusion>
<artifactId>seata-spring-boot-starterartifactId>
<groupId>io.seatagroupId>
exclusion>
exclusions>
dependency>
<dependency>
<groupId>io.seatagroupId>
<artifactId>seata-spring-boot-starterartifactId>
<version>1.4.2version>
dependency>
配置文件配置
seata:
registry: # TC服务注册中心的配置,微服务根据这些信息去注册中心获取tc服务地址
type: nacos # 注册中心类型 nacos
nacos:
server-addr: 127.0.0.1:8848 # nacos地址
namespace: "" # namespace,默认为空
group: DEFAULT_GROUP # 分组,默认是DEFAULT_GROUP
application: seata-tc-server # seata服务名称
username: nacos
password: nacos
tx-service-group: seata-demo # 事务组名称
service:
vgroup-mapping: # 事务组与cluster的映射关系
seata-demo: SH
XA
规范 是 X/Open
组织定义的分布式事务处理(DTP
,Distributed Transaction Processing
)标准,XA
规范 描述了全局的TM与局部的RM
之间的接口,几乎所有主流的数据库都对 XA
规范 提供了支持。
XA是规范,目前主流数据库都实现了这种规范,实现的原理都是基于两阶段提交。
正常情况:
异常情况:
第一阶段:
第二阶段:
Seata对原始的XA模式做了简单的封装和改造,以适应自己的事务模型,基本架构如图:
RM第一阶段的工作:
TC第二阶段的工作:
RM第二阶段的工作:
XA模式的优点:
XA模式的缺点:
Seata的starter已经完成了XA模式的自动装配,实现非常简单,步骤如下:
(1)修改application.yml文件(每个参与事务的微服务),开启XA模式:
seata:
data-source-proxy-mode: XA
(2)给发起全局事务的入口方法添加@GlobalTransactional
注解即可。
AT模式同样是分阶段提交的事务模型,不过缺弥补了XA模型中资源锁定周期过长的缺陷。
基本流程图:
RM第一阶段的工作:
RM第二阶段提交时的工作:
RM第二阶段回滚时的工作:
我们用一个真实的业务来梳理下AT模式的原理。
比如,现在又一个数据库表,记录用户余额:
id | money |
---|---|
1 | 100 |
其中一个分支业务要执行的SQL为:
update tb_account set money = money - 10 where id = 1
AT模式下,当前分支事务执行流程如下:
第一阶段:
{
"id": 1, "money": 100
}
money = 90
;第二阶段:
{"id": 1, "money": 100}
),将快照恢复到数据库。此时数据库再次恢复为100。流程图如下:
AT模式与XA模式最大的区别是什么?
在多线程并发访问AT模式的分布式事务时,有可能出现脏写问题,如图:
解决思路就是引入了全局锁的概念。在释放DB锁之前,先拿到全局锁。避免同一时刻有另外一个事务来操作当前数据。
AT模式的优点:
AT模式的缺点:
AT模式中的快照生成、回滚等动作都是由框架自动完成,没有任何代码侵入,因此实现非常简单。
只不过,AT模式需要一个表来记录全局锁、另一张表来记录数据快照undo_log。
(1)新建两张数据库表用来记录全局锁和数据快照;
(2)修改application.yml文件,将事务模式修改为AT模式即可:
seata:
data-source-proxy-mode: AT # 默认就是AT
TCC模式与AT模式非常相似,每阶段都是独立事务,不同的是TCC通过人工编码来实现数据恢复。需要实现三个方法:
Try:资源的检测和预留;
Confirm:完成资源操作业务;要求 Try 成功 Confirm 一定要能成功。
Cancel:预留资源释放,可以理解为try的反向操作。
举例,一个扣减用户余额的业务。假设账户A原来余额是100,需要余额扣减30元。
初始余额:
余额充足,可以冻结:
此时,总金额 = 冻结金额 + 可用金额,数量依然是100不变。事务直接提交无需等待其它事务。
确认可以提交,不过之前可用金额已经扣减过了,这里只要清除冻结金额就好了:
此时,总金额 = 冻结金额 + 可用金额 = 0 + 70 = 70元
需要回滚,那么就要释放冻结金额,恢复可用金额:
Seata中的TCC模型依然延续之前的事务架构,如图:
TCC模式的每个阶段:
TCC的优点:
TCC的缺点:
当某分支事务的try阶段阻塞时,可能导致全局事务超时而触发二阶段的cancel操作。在未执行try操作时先执行了cancel操作,这时cancel不能做回滚,就是空回滚。
如图:
执行cancel操作时,应当判断try是否已经执行,如果尚未执行,则应该空回滚。
对于已经空回滚的业务,之前被阻塞的try操作恢复,继续执行try,就永远不可能confirm或cancel ,事务一直处于中间状态,这就是业务悬挂。
执行try操作时,应当判断cancel是否已经执行过了,如果已经执行,应当阻止空回滚后的try操作,避免悬挂。
解决空回滚和业务悬挂问题,必须要记录当前事务状态,是在try、还是cancel。
这里我们定义一张表:
CREATE TABLE `account_freeze_tbl` (
`xid` varchar(128) NOT NULL,
`user_id` varchar(255) DEFAULT NULL COMMENT '用户id',
`freeze_money` int(11) unsigned DEFAULT '0' COMMENT '冻结金额',
`state` int(1) DEFAULT NULL COMMENT '事务状态,0:try,1:confirm,2:cancel',
PRIMARY KEY (`xid`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 ROW_FORMAT=COMPACT;
其中:
那此时,我们的业务该怎么做呢?
接下来,我们利用TCC实现余额扣减功能。
TCC的Try、Confirm、Cancel方法都需要在接口中基于注解来声明,
import io.seata.rm.tcc.api.BusinessActionContext;
import io.seata.rm.tcc.api.BusinessActionContextParameter;
import io.seata.rm.tcc.api.LocalTCC;
import io.seata.rm.tcc.api.TwoPhaseBusinessAction;
@LocalTCC
public interface AccountTCCService {
@TwoPhaseBusinessAction(name = "deduct", commitMethod = "confirm", rollbackMethod = "cancel")
void deduct(@BusinessActionContextParameter(paramName = "userId") String userId,
@BusinessActionContextParameter(paramName = "money")int money);
boolean confirm(BusinessActionContext ctx);
boolean cancel(BusinessActionContext ctx);
}
实现TCC业务:
@Service
@Slf4j
public class AccountTCCServiceImpl implements AccountTCCService {
@Autowired
private AccountMapper accountMapper;
@Autowired
private AccountFreezeMapper freezeMapper;
@Override
@Transactional
public void deduct(String userId, int money) {
// 0.获取事务id
String xid = RootContext.getXID();
// 1.扣减可用余额
accountMapper.deduct(userId, money);
// 2.记录冻结金额,事务状态
AccountFreeze freeze = new AccountFreeze();
freeze.setUserId(userId);
freeze.setFreezeMoney(money);
freeze.setState(AccountFreeze.State.TRY);
freeze.setXid(xid);
freezeMapper.insert(freeze);
}
@Override
public boolean confirm(BusinessActionContext ctx) {
// 1.获取事务id
String xid = ctx.getXid();
// 2.根据id删除冻结记录
int count = freezeMapper.deleteById(xid);
return count == 1;
}
@Override
public boolean cancel(BusinessActionContext ctx) {
// 0.查询冻结记录
String xid = ctx.getXid();
AccountFreeze freeze = freezeMapper.selectById(xid);
// 1.恢复可用余额
accountMapper.refund(freeze.getUserId(), freeze.getFreezeMoney());
// 2.将冻结金额清零,状态改为CANCEL
freeze.setFreezeMoney(0);
freeze.setState(AccountFreeze.State.CANCEL);
int count = freezeMapper.updateById(freeze);
return count == 1;
}
}
Saga 模式是 Seata 即将开源的长事务解决方案,将由蚂蚁金服主要贡献。
其理论基础是Hector & Kenneth 在1987年发表的论文Sagas。
Seata官网对于Saga的指南:https://seata.io/zh-cn/docs/user/saga.html
在 Saga 模式下,分布式事务内有多个参与者,每一个参与者都是一个冲正补偿服务,需要用户根据业务场景实现其正向操作和逆向回滚操作。
分布式事务执行过程中,依次执行各参与者的正向操作,如果所有正向操作均执行成功,那么分布式事务提交。如果任何一个正向操作执行失败,那么分布式事务会去退回去执行前面各参与者的逆向回滚操作,回滚已提交的参与者,使分布式事务回到初始状态。
Saga也分为两个阶段:
优点:
缺点:
如图: