redis

linux中安装

(8条消息) Ubuntu中显示yum命令找不到_sinat_40482939的博客-CSDN博客_找不到命令yum

(8条消息) 安装yum(Ubuntu中的安装,带讲解,以及源的更新)_Philip.Lau的博客-CSDN博客_安装yum

(8条消息) Ubuntu中yum的安装 及 E:无法定位软件包问题的解决_msthriving的博客-CSDN博客_无法定位yum

先安装c++

yum install gcc

redis在/home/opt/redis/redis-

/usr/local/bin

后台启动

/home/opt/redis/redis-/redis.conf

配置复制到了/etc/redis.conf

redis-server /etc/redis.conf

查看运行

ps -ef | grep redis

链接链接到服务器

redis-cli

查看链接状态

ping 

关闭( 要先链接)

shutdown

或者

kill命令

默认有16个库,一般只用第一个库

端口默认6379

单线程+多路IO复用

/use/local/bin/redis-cli

基本语法

查询所有key

keys *1

退出 exist

查看数据类型 type

删除

del
unlink 非阻塞删除,异步删除

设置过期时间

expire

查看过期时间

ttl(time to live)

-1 永不过期

-2 已经过期

切换库

select 0

查看当前库key数量

dbsize

清空当前库

flushdb

清空全部库

flushall

数据类型

String

二进制安全的 value值最多512M

添加键值对

set

重复设置会覆盖

取值

get

追加

append <>

获取长度

strlen

取值,但是只有key没被定义才会生效

setnx

+1

incr

+任意

incrby <值>

-1

decr

-任意

decrby <>

原子性

线程之间不会打断

mset …

mget …

原子性的

msetnx …

getrange <起始位置> <结束位置>

setrange

setex <过期时间>

以新换旧,设置新值的同时输出旧值

getset

String 动态字符串

最大为512M

List

单键多值:Redis 列表是简单的字符串列表,按照插入顺序排序。你可以添加一个元素到列表的头部(左边)或者尾部(右边)。它的底

底层是双向链表 查询效率低

命令

从左/右边加入一个或者多个值

lpush/rpush

lrange 0 -1表示显示全部

从左/右边吐出一个值

lpop/rpop

从key1右边取值,放入key2左边

rpoplpush

取某个位置的

lindex

长度

llen

在v1前面/后面加入v2

linsert before/after < v2>

从左边删除n个值为value的

lrem

替换

lset

数据结构是quickList

P9

Set

自动排重

sadd …

将一个或多个 member 元素加入到集合 key 中,已经存在的 member 元素将被忽略

smembers 取出该集合的所有值。

sismember 判断集合是否为含有该值,有1,没有0

scard返回该集合的元素个数。

srem … 删除集合中的某个元素。

spop 随机从该集合中吐出一个值。

srandmember 随机从该集合中取出n个值。不会从集合中删除 。

smove value把集合中一个值从一个集合移动到另一个集合

sinter 返回两个集合的交集元素。

sunion 返回两个集合的并集元素。

sdiff 返回两个集合的差集元素(key1中的,不包含key2中的)

数据结构

Set数据结构是dict字典,字典是用哈希表实现的。

Java中HashSet的内部实现使用的是HashMap,只不过所有的value都指向同一个对象。Redis的set结构也是一样,它的内部也使用hash结构,所有的value都指向同一个内部值。

哈希Hash

Redis hash 是一个键值对集合。

Redis hash是一个string类型的field和value的映射表,hash特别适合用于存储对象。

类似Java里面的Map

用户ID为查找的key,存储的value用户对象包含姓名,年龄,生日等信息,如果用普通的key/value结构来存储

redis_第1张图片

hset 给集合中的 键赋值

hget 从集合取出 value

hmset … 批量设置hash的值

hexists查看哈希表 key 中,给定域 field 是否存在。

hkeys 列出该hash集合的所有field

hvals 列出该hash集合的所有value

hincrby 为哈希表 key 中的域 field 的值加上增量 1 -1

hsetnx 将哈希表 key 中的域 field 的值设置为 value ,当且仅当域 field 不存在 .

Zset

Redis有序集合zset与普通集合set非常相似,是一个没有重复元素的字符串集合。

不同之处是有序集合的每个成员都关联了一个评分(score),这个评分(score)被用来按照从最低分到最高分的方式排序集合中的成员。集合的成员是唯一的,但是评分可以是重复了 。

因为元素是有序的, 所以你也可以很快的根据评分(score)或者次序(position)来获取一个范围的元素。

访问有序集合的中间元素也是非常快的,因此你能够使用有序集合作为一个没有重复成员的智能列表。

语法

zadd …

将一个或多个 member 元素及其 score 值加入到有序集 key 当中。

zrange [WITHSCORES]

返回有序集 key 中,下标在 之间的元素

带WITHSCORES,可以让分数一起和值返回到结果集。

zrangebyscore key minmax [withscores] [limit offset count]

返回有序集 key 中,所有 score 值介于 min 和 max 之间(包括等于 min 或 max )的成员。有序集成员按 score 值递增(从小到大)次序排列。

zrevrangebyscore key maxmin [withscores] [limit offset count]

同上,改为从大到小排列。

zincrby 为元素的score加上增量

zrem 删除该集合下,指定值的元素

zcount 统计该集合,分数区间内的元素个数

zrank 返回该值在集合中的排名,从0开始。

SortedSet(zset)是Redis提供的一个非常特别的数据结构,一方面它等价于Java的数据结构Map,可以给每一个元素value赋予一个权重score,另一方面它又类似于TreeSet,内部的元素会按照权重score进行排序,可以得到每个元素的名次,还可以通过score的范围来获取元素的列表。

zset底层使用了两个数据结构

(1)hash,hash的作用就是关联元素value和权重score,保障元素value的唯一性,可以通过元素value找到相应的score值。

(2)跳跃表,跳跃表的目的在于给元素value排序,根据score的范围获取元素列表。

配置文件

网络相关配置

bind

默认情况bind=127.0.0.1只能接受本机的访问请求

不写的情况下,无限制接受任何ip地址的访问

生产环境肯定要写你应用服务器的地址;服务器是需要远程访问的,所以需要将其注释掉

如果开启了protected-mode,那么在没有设定bind ip且没有设密码的情况下,Redis只允许接受本机的响应

protected-mode

将本机访问保护模式设置no

Port

端口号 默认6379

tcp-backlog

设置tcp的backlog,backlog其实是一个连接队列,backlog队列总和=未完成三次握手队列 + 已经完成三次握手队列。

在高并发环境下你需要一个高backlog值来避免慢客户端连接问题。

注意Linux内核会将这个值减小到/proc/sys/net/core/somaxconn的值(128),所以需要确认增大/proc/sys/net/core/somaxconn和/proc/sys/net/ipv4/tcp_max_syn_backlog(128)两个值来达到想要的效果

timeout

一个空闲的客户端维持多少秒会关闭,0表示关闭该功能。即永不关闭。

tcp-keepalive

对访问客户端的一种心跳检测,每个n秒检测一次。

单位为秒,如果设置为0,则不会进行Keepalive检测,建议设置成60

GENERAL通用

daemonize

是否为后台进程,设置为yes

守护进程,后台启动

Redis的发布和订阅

Redis 发布订阅 (pub/sub) 是一种消息通信模式:发送者 (pub) 发送消息,订阅者 (sub) 接收消息。

Redis 客户端可以订阅任意数量的频道

1、 打开一个客户端订阅channel1

SUBSCRIBE channel1

2、打开另一个客户端,给channel1发布消息hello

publish channel1 hello

Redis新数据类型

Bitmaps

位操作的字符串

setbit设置Bitmaps中某个偏移量的值(0或1)

getbit获取Bitmaps中某个偏移量的值

bitcount[start end] 统计字符串从start字节到end字节比特值为1的数量

bitop and(or/not/xor) [key…]

bitop是一个复合操作, 它可以做多个Bitmaps的and(交集) 、 or(并集) 、 not(非) 、 xor(异或) 操作并将结果保存在destkey中。

HyperLogLog

在工作当中,我们经常会遇到与统计相关的功能需求,比如统计网站PV(PageView页面访问量),可以使用Redis的incr、incrby轻松实现。

但像UV(UniqueVisitor,独立访客)、独立IP数、搜索记录数等需要去重和计数的问题如何解决?这种求集合中不重复元素个数的问题称为基数问题。

解决基数问题有很多种方案:

(1)数据存储在MySQL表中,使用distinct count计算不重复个数

(2)使用Redis提供的hash、set、bitmaps等数据结构来处理

以上的方案结果精确,但随着数据不断增加,导致占用空间越来越大,对于非常大的数据集是不切实际的。

能否能够降低一定的精度来平衡存储空间?Redis推出了HyperLogLog

Redis HyperLogLog 是用来做基数统计的算法,HyperLogLog 的优点是,在输入元素的数量或者体积非常非常大时,计算基数所需的空间总是固定的、并且是很小的。

在 Redis 里面,每个 HyperLogLog 键只需要花费 12 KB 内存,就可以计算接近 2^64 个不同元素的基数。这和计算基数时,元素越多耗费内存就越多的集合形成鲜明对比。

但是,因为 HyperLogLog 只会根据输入元素来计算基数,而不会储存输入元素本身,所以 HyperLogLog 不能像集合那样,返回输入的各个元素。

什么是基数?

比如数据集 {1, 3, 5, 7, 5, 7, 8}, 那么这个数据集的基数集为 {1, 3, 5 ,7, 8}, 基数(不重复元素)为5。 基数估计就是在误差可接受的范围内,快速计算基数。

  • 语法

pfadd < element> [element …] 添加指定元素到 HyperLogLog 中

pfcount [key …] 计算HLL的近似基数,可以计算多个HLL,比如用HLL存储每天的UV,计算一周的UV可以使用7天的UV合并计算即可

pfmerge [sourcekey …] 将一个或多个HLL合并后的结果存

Geospatial

Redis 3.2 中增加了对GEO类型的支持。GEO,Geographic,地理信息的缩写。该类型,就是元素的2维坐标,在地图上就是经纬度。redis基于该类型,提供了经纬度设置,查询,范围查询,距离查询,经纬度Hash等常见操作。

geoadd< longitude> [longitude latitude member…] 添加地理位置(经度,纬度,名称)

geopos [member…] 获得指定地区的坐标值

geodist [m|km|ft|mi ] 获取两个位置之间的直线距离

单位:

m 表示单位为米[默认值]。

km 表示单位为千米。

mi 表示单位为英里。

ft 表示单位为英尺。

如果用户没有显式地指定单位参数, 那么 GEODIST 默认使用米作为单位

georadius< longitude>radius m|km|ft|mi 以给定的经纬度为中心,找出某一半径内的元素

Jedis

java操作redis

Jedis所需jar包

<dependency>
<groupId>redis.clientsgroupId>
<artifactId>jedisartifactId>
<version>3.2.0version>
dependency>
  • 连接Redis注意事项
  1. 阿里云需要设置:安全组、防火墙、注释掉bind、保护模式设置为no

  2. Linux需要禁用Linux的防火墙:Linux(CentOS7)里执行命令

systemctl stop/disable firewalld.service

​ redis.conf中注释掉bind 127.0.0.1 ,然后 protected-mode no

测试程序

package com.atguigu.jedis;
import redis.clients.jedis.Jedis;
public class Demo01 {
public static void main(String[] args) {
Jedis jedis = new Jedis("192.168.137.3",6379);
String pong = jedis.ping();
System.out.println("连接成功:"+pong);
jedis.close();
    }
}

Jedis-API:

Key

jedis.set("k1", "v1");
jedis.set("k2", "v2");
jedis.set("k3", "v3");
Set<String> keys = jedis.keys("*");
System.out.println(keys.size());
for (String key : keys) {
System.out.println(key);
}
System.out.println(jedis.exists("k1"));
System.out.println(jedis.ttl("k1"));                
System.out.println(jedis.get("k1"));

String

jedis.mset("str1","v1","str2","v2","str3","v3");
System.out.println(jedis.mget("str1","str2","str3"));

List

List<String> list = jedis.lrange("mylist",0,-1);
for (String element : list) {
System.out.println(element);
}

Set

jedis.sadd("orders", "order01");
jedis.sadd("orders", "order02");
jedis.sadd("orders", "order03");
jedis.sadd("orders", "order04");
Set<String> smembers = jedis.smembers("orders");
for (String order : smembers) {
System.out.println(order);
}
jedis.srem("orders", "order02");

hash

jedis.hset("hash1","userName","lisi");
System.out.println(jedis.hget("hash1","userName"));
Map<String,String> map = new HashMap<String,String>();
map.put("telphone","13810169999");
map.put("address","atguigu");
map.put("email","[email protected]");
jedis.hmset("hash2",map);
List<String> result = jedis.hmget("hash2", "telphone","email");
for (String element : result) {
System.out.println(element);
}

zset

jedis.zadd("zset01", 100d, "z3");
jedis.zadd("zset01", 90d, "l4");
jedis.zadd("zset01", 80d, "w5");
jedis.zadd("zset01", 70d, "z6");
 
Set<String> zrange = jedis.zrange("zset01", 0, -1);

for (String e : zrange) {
System.out.println(e);
}

P19实例

SpringBoot整合

  1. 在pom.xml文件中引入redis相关依赖

<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-data-redisartifactId>
dependency>


<dependency>
<groupId>org.apache.commonsgroupId>
<artifactId>commons-pool2artifactId>
<version>2.6.0version>
dependency>

  1. application.properties配置redis配置

    #Redis服务器地址
    spring.redis.host=192.168.140.136
    #Redis服务器连接端口
    spring.redis.port=6379
    #Redis数据库索引(默认为0)
    spring.redis.database= 0
    #连接超时时间(毫秒)
    spring.redis.timeout=1800000
    #连接池最大连接数(使用负值表示没有限制)
    spring.redis.lettuce.pool.max-active=20
    #最大阻塞等待时间(负数表示没限制)
    spring.redis.lettuce.pool.max-wait=-1
    #连接池中的最大空闲连接
    spring.redis.lettuce.pool.max-idle=5
    #连接池中的最小空闲连接
    spring.redis.lettuce.pool.min-idle=0
    
    
  2. 添加redis配置类

    @EnableCaching
    @Configuration
    public class RedisConfig extends CachingConfigurerSupport {
    
        @Bean
        public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory factory) {
            RedisTemplate<String, Object> template = new RedisTemplate<>();
            RedisSerializer<String> redisSerializer = new StringRedisSerializer();
            Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);
            ObjectMapper om = new ObjectMapper();
            om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
            om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
            jackson2JsonRedisSerializer.setObjectMapper(om);
            template.setConnectionFactory(factory);
    //key序列化方式
            template.setKeySerializer(redisSerializer);
    //value序列化
            template.setValueSerializer(jackson2JsonRedisSerializer);
    //value hashmap序列化
            template.setHashValueSerializer(jackson2JsonRedisSerializer);
            return template;
     @Bean
        public CacheManager cacheManager(RedisConnectionFactory factory) {
            RedisSerializer<String> redisSerializer = new StringRedisSerializer();
            Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);
    //解决查询缓存转换异常的问题
            ObjectMapper om = new ObjectMapper();
            om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
            om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
            jackson2JsonRedisSerializer.setObjectMapper(om);
    // 配置序列化(解决乱码的问题),过期时间600秒
            RedisCacheConfiguration config = RedisCacheConfiguration.defaultCacheConfig()
                    .entryTtl(Duration.ofSeconds(600))
                    .serializeKeysWith(RedisSerializationContext.SerializationPair.fromSerializer(redisSerializer))
                    .serializeValuesWith(RedisSerializationContext.SerializationPair.fromSerializer(jackson2JsonRedisSerializer))
                    .disableCachingNullValues();
            RedisCacheManager cacheManager = RedisCacheManager.builder(factory)
                    .cacheDefaults(config)
                    .build();
            return cacheManager;
        }
    }
    
    
  3. 测试一下RedisTestController中添加测试方法

    @RestController
    @RequestMapping("/redisTest")
    public class RedisTestController {
        @Autowired
        private RedisTemplate redisTemplate;
    
        @GetMapping
        public String testRedis() {
            //设置值到redis
            redisTemplate.opsForValue().set("name","lucy");
            //从redis获取值
            String name = (String)redisTemplate.opsForValue().get("name");
            return name;
        }
    }
    

事务

  • 定义

    Redis事务是一个单独的隔离操作:事务中的所有命令都会序列化、按顺序地执行。事务在执行的过程中,不会被其他客户端发送来的命令请求所打断。

    Redis事务的主要作用就是串联多个命令防止别的命令插队。

  • multi、exec、discard指令

    从输入Multi命令开始,输入的命令都会依次进入命令队列中,但不会执行,直到输入Exec后,Redis会将之前的命令队列中的命令依次执行。

    组队的过程中可以通过discard来放弃组队。

redis_第2张图片

事务的错误处理

组队中某个命令出现了报告错误,执行时整个的所有队列都会被取消。

redis_第3张图片

如果执行阶段某个命令报出了错误,则只有报错的命令不会被执行,而其他的命令都会执行,不会回滚。

redis_第4张图片

事务的冲突问题

一个请求想给金额减8000

一个请求想给金额减5000

一个请求想给金额减1000

redis_第5张图片

悲观锁

悲观锁:认为每次操作数据都不安全,都需要加锁。

悲观锁(Pessimistic Lock), 顾名思义,就是很悲观,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会block直到它拿到锁。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁表锁等,读锁写锁等,都是在做操作之前先上锁。

redis_第6张图片

乐观锁

乐观锁(Optimistic Lock), 顾名思义,就是很乐观,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号等机制。乐观锁适用于多读的应用类型,这样可以提高吞吐量。Redis就是利用这种check-and-set机制实现事务的。

redis_第7张图片

WATCH key [key …]

乐观锁的应用

在执行multi之前,先执行watch key1 [key2],可以监视一个(或多个) key ,如果在事务**执行之前这个(或这些) key **被其他命令所改动,那么事务将被打断。

unwatch

取消 WATCH 命令对所有 key 的监视。

如果在执行 WATCH 命令之后,EXEC 命令或DISCARD 命令先被执行了的话,那么就不需要再执行UNWATCH 了。

Redis事务三特性

  • 单独的隔离操作

    • 事务中的所有命令都会序列化、按顺序地执行。事务在执行的过程中,不会被其他客户端发送来的命令请求所打断。
  • 没有隔离级别的概念

    • 队列中的命令没有提交之前都不会实际被执行,因为事务提交前任何指令都不会被实际执行
  • 不保证原子性

    • 事务中如果有一条命令执行失败,其后的命令仍然会被执行,没有回滚

实例P24-27

持久化操作

  • RDB
  • AOF

RDB

在指定的时间间隔内将内存中的数据集快照写入磁盘, 也就是行话讲的Snapshot快照,它恢复时是将快照文件直接读到内存里

Redis会单独创建(fork)一个子进程来进行持久化,会先将数据写入到 一个临时文件中,待持久化过程都结束了,再用这个临时文件替换上次持久化好的文件。 整个过程中,主进程是不进行任何IO操作的,这就确保了极高的性能 如果需要进行大规模数据的恢复,且对于数据恢复的完整性不是非常敏感,那RDB方式要比AOF方式更加的高效。RDB的缺点是最后一次持久化后的数据可能丢失。

Fork的作用是复制一个与当前进程一样的进程。新进程的所有数据(变量、环境变量、程序计数器等) 数值都和原进程一致,但是是一个全新的进程,并作为原进程的子进程

在Linux程序中,fork()会产生一个和父进程完全相同的子进程,但子进程在此后多会exec系统调用,出于效率考虑,Linux中引入了“写时复制技术

一般情况父进程和子进程会共用同一段物理内存,只有进程空间的各段的内容要发生变化时,才会将父进程的内容复制一份给子进程。

RDB默认开启

AOF

日志的形式来记录每个写操作(增量保存),将Redis执行过的所有写指令记录下来(读操作不记录), 只许追加文件但不可以改写文件,redis启动之初会读取该文件重新构建数据,换言之,redis 重启的话就根据日志文件的内容将写指令从前到后执行一次以完成数据的恢复工作

(1)客户端的请求写命令会被append追加到AOF缓冲区内;

(2)AOF缓冲区根据AOF持久化策略[always,everysec,no]将操作sync同步到磁盘的AOF文件中;

(3)AOF文件大小超过重写策略或手动重写时,会对AOF文件rewrite重写,压缩AOF文件容量;

(4)Redis服务重启时,会重新load加载AOF文件中的写操作达到数据恢复的目的;

redis_第8张图片

AOF默认不开启

主从复制

主机数据更新后根据配置和策略, 自动同步到备机的master/slaver机制,Master以写为主,Slave以读为主

  • 读写分离,性能扩展

  • 容灾快速恢复(一主多从,从 挂掉一个可以从别的服务器读)

    redis_第9张图片

一主多从

在根目录创建myredis文件

拷贝多个redis.conf文件include(写绝对路径)

开启daemonize yes

Pid文件名字pidfile

指定端口port

Log文件名字

dump.rdb名字dbfilename

Appendonly 关掉或者换名字

新建redis6379.conf

include /myredis/redis.conf

pidfile /var/run/redis_6379.pid

port 6379

dbfilename dump6379.rdb

同上创建6380,6381

然后启动三个redis服务器

查看主机运行状况

redis-cli -p 6379
先链接

info replication
查看主从状况

配置只配置从 不配置主机

进入从机,然后 slaveof <端口号>

薪火相传

上一个Slave可以是下一个slave的Master,Slave同样可以接收其他 slaves的连接和同步请求,那么该slave作为了链条中下一个的master, 可以有效减轻master的写压力,去中心化降低风险。

用 slaveof

中途变更转向:会清除之前的数据,重新建立拷贝最新的

风险是一旦某个slave宕机,后面的slave都没法备份

主机挂了,从机还是从机,无法写数据了

反客为主

当一个master宕机后,后面的slave可以立刻升为master,其后面的slave不用做任何修改。

用 slaveof no one 将从机变为主机。

哨兵模式

反客为主的自动版,能够后台监控主机是否故障,如果故障了根据投票数自动将从库转换为主库

  1. 先配置为一主二仆

  2. 自定义的/myredis目录下新建sentinel.conf文件,名字绝不能错 sentinel(哨兵)

  3. 配置哨兵,填写内容

    sentinel monitor mymaster 127.0.0.1 6379 1
    

    其中mymaster为监控对象起的服务器名称, 1 为至少有多少个哨兵同意迁移的数量。

  4. 启动哨兵

    /usr/local/bin

    redis做压测可以用自带的redis-benchmark工具

    执行

    redis-sentinel /myredis/sentinel.conf 
    
  5. 主服务器挂掉

    会选出一个从服务器变成主服务器(优先级在redis.conf中默认:slave-priority 100,值越小优先级越高)

    原来的主服务器会变成从服务器

    redis_第10张图片

优先级在redis.conf中默认:slave-priority 100,值越小优先级越高

偏移量是指获得原主机数据最全的

每个redis实例启动后都会随机生成一个40位的runid

复制延时

由于所有的写操作都是先在Master上操作,然后同步更新到Slave上,所以从Master同步到Slave机器有一定的延迟,当系统很繁忙的时候,延迟问题会更加严重,Slave机器数量的增加也会使这个问题更加严重。

redis集群

Redis 集群实现了对Redis的水平扩容,即启动N个redis节点,将整个数据库分布存储在这N个节点中,每个节点存储总数据的1/N。

Redis 集群通过分区(partition)来提供一定程度的可用性(availability): 即使集群中有一部分节点失效或者无法进行通讯, 集群也可以继续处理命令请求。

配置集群

基本配置

开启daemonize yes

Pid文件名字

指定端口

Log文件名字

Dump.rdb名字

Appendonly 关掉或者换名字

配置添加

cluster-enabled yes 打开集群模式

cluster-config-file nodes-6379.conf 设定节点配置文件名

cluster-node-timeout 15000 设定节点失联时间,超过该时间(毫秒),集群自动进行主从切换。

替换:%s/6379/6380 将6379替换为6380

启动redis服务器

先进入cd /opt/redis-6.2.1/src

然后合体,设置密码那个命令需要改成:redis-cli -a 密码 --cluster create --cluster-replicas

redis-cli --cluster create --cluster-replicas 1 192.168.11.101:6379 192.168.11.101:6380 192.168.11.101:6381 192.168.11.101:6389 192.168.11.101:6390 192.168.11.101:6391

1表示六个,三对一主一从

链接

-c 采用集群策略连接,设置数据会自动切换到相应的写主机

redis-cli -c -p 端口

通过 cluster nodes 命令查看集群信息

redis cluster 如何分配这六个节点?

一个集群至少要有三个主节点。

选项 --cluster-replicas 1 表示我们希望为集群中的每个主节点创建一个从节点。

分配原则尽量保证每个主数据库运行在不同的IP地址,每个从库和主库不在一个IP地址上。

slots

一个 Redis 集群包含 16384 个插槽(hash slot), 数据库中的每个键都属于这 16384 个插槽的其中一个,

集群使用公式 CRC16(key) % 16384 来计算键 key 属于哪个槽, 其中 CRC16(key) 语句用于计算键 key 的 CRC16 校验和 。

集群中的每个节点负责处理一部分插槽。 举个例子, 如果一个集群可以有主节点, 其中:

节点 A 负责处理 0 号至 5460 号插槽。

节点 B 负责处理 5461 号至 10922 号插槽。

节点 C 负责处理 10923 号至 16383 号插槽。

在redis-cli每次录入、查询键值,redis都会计算出该key应该送往的插槽,如果不是该客户端对应服务器的插槽,redis会报错,并告知应前往的redis实例地址和端口。

redis-cli客户端提供了 –c 参数实现自动重定向。

如 redis-cli -c –p 6379 登入后,再录入、查询键值对可以自动重定向。

不在一个slot下的键值,是不能使用mget,mset等多键操作。

可以通过{}来定义组的概念,从而使key中{}内相同内容的键值对放到一个slot中去。

查询集群中的值

CLUSTER GETKEYSINSLOT 返回 count 个 slot 槽中的键。redis_第11张图片

故障修复

如果主节点下线?从节点能否自动升为主节点?

会,原主机再上线就会变为从机

注意:15秒超时

主节点恢复后,主从关系会如何?主节点回来变成从机。

如果所有某一段插槽的主从节点都宕掉,redis服务是否还能继续?

如果某一段插槽的主从都挂掉,而cluster-require-full-coverage 为yes ,那么 ,整个集群都挂掉

如果某一段插槽的主从都挂掉,而cluster-require-full-coverage 为no ,那么,该插槽数据全都不能使用,也无法存储。

redis.conf中的参数 cluster-require-full-coverage

集群的Jedis开发

public class JedisClusterTest {

 public static void main(String[] args) { 

   Set<HostAndPort>set =new HashSet<HostAndPort>();

   set.add(new HostAndPort("192.168.31.211",6379));

   JedisCluster jedisCluster=new JedisCluster(set);

   jedisCluster.set("k1", "v1");

   System.*out.println(jedisCluster.get("k1"));*

 }

}

Redis集群提供了以下好处

  • 实现扩容

  • 分摊压力

  • 无中心配置相对简单

Redis 集群的不足

  • 多键操作是不被支持的

  • 多键的Redis事务是不被支持的。lua脚本不被支持

  • 由于集群方案出现较晚,很多公司已经采用了其他的集群方案,而代理或者客户端分片的方案想要迁移至redis cluster,需要整体迁移而不是逐步过渡,复杂度较大。

Redis应用问题解决

缓存穿透

问题描述

key对应的数据在数据源并不存在,每次针对此key的请求从缓存获取不到,请求都会压到数据源,从而可能压垮数据源。比如用一个不存在的用户id获取用户信息,不论缓存还是数据库都没有,若黑客利用此漏洞进行攻击可能压垮数据库。

redis_第12张图片

1.1.2. 解决方案

一个一定不存在缓存及查询不到的数据,由于缓存是不命中时被动写的,并且出于容错考虑,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义。

解决方案:

(1) **对空值缓存:**如果一个查询返回的数据为空(不管是数据是否不存在),我们仍然把这个空结果(null)进行缓存,设置空结果的过期时间会很短,最长不超过五分钟

(2) 设置可访问的名单(白名单):

使用bitmaps类型定义一个可以访问的名单,名单id作为bitmaps的偏移量,每次访问和bitmap里面的id进行比较,如果访问id不在bitmaps里面,进行拦截,不允许访问。

(3) 采用布隆过滤器:(布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量(位图)和一系列随机映射函数(哈希函数)。

布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。)

将所有可能存在的数据哈希到一个足够大的bitmaps中,一个一定不存在的数据会被 这个bitmaps拦截掉,从而避免了对底层存储系统的查询压力。

(4) **进行实时监控:**当发现Redis的命中率开始急速降低,需要排查访问对象和访问的数据,和运维人员配合,可以设置黑名单限制服务

缓存击穿

问题描述

key对应的数据存在,但在redis中过期,此时若有大量并发请求过来,这些请求发现缓存过期一般都会从后端DB加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端DB压垮。

redis_第13张图片

解决方案

key可能会在某些时间点被超高并发地访问,是一种非常“热点”的数据。这个时候,需要考虑一个问题:缓存被“击穿”的问题。

解决问题:

**(1)预先设置热门数据:**在redis高峰访问之前,把一些热门数据提前存入到redis里面,加大这些热门数据key的时长

**(2)实时调整:**现场监控哪些数据热门,实时调整key的过期时长

(3)使用锁:

​ (1) 就是在缓存失效的时候(判断拿出来的值为空),不是立即去load db。

​ (2) 先使用缓存工具的某些带成功操作返回值的操作(比如Redis的SETNX)去set一个mutex key

​ (3) 当操作返回成功时,再进行load db的操作,并回设缓存,最后删除mutex key;

​ (4) 当操作返回失败,证明有线程在load db,当前线程睡眠一段时间再重试整个get缓存的方法。

redis_第14张图片

缓存雪崩

问题描述

key对应的数据存在,但在redis中过期,此时若有大量并发请求过来,这些请求发现缓存过期一般都会从后端DB加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端DB压垮。

缓存雪崩与缓存击穿的区别在于这里针对很多key缓存,前者则是某一个key

正常访问

redis_第15张图片

缓存失效瞬间

redis_第16张图片

解决方案

缓存失效时的雪崩效应对底层系统的冲击非常可怕!

解决方案:

(1) **构建多级缓存架构:**nginx缓存 + redis缓存 +其他缓存(ehcache等)

(2) 使用锁或队列:

用加锁或者队列的方式保证来保证不会有大量的线程对数据库一次性进行读写,从而避免失效时大量的并发请求落到底层存储系统上。不适用高并发情况

(3) 设置过期标志更新缓存:

记录缓存数据是否过期(设置提前量),如果过期会触发通知另外的线程在后台去更新实际key的缓存。

(4) 将缓存失效时间分散开:

比如我们可以在原有的失效时间基础上增加一个随机值,比如1-5分钟随机,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。

分布式锁

使用redis实现分布式锁

redis:命令

# set sku:1:info “OK” NX PX 10000

EX second :设置键的过期时间为 second 秒。

SET key value EX second 效果等同于 SETEX key second value 。

PX millisecond :设置键的过期时间为 millisecond 毫秒。

SET key value PX millisecond 效果等同于 PSETEX key millisecond value 。

NX :只在键不存在时,才对键进行设置操作。 SET key value NX 效果等同于 SETNX key value 。

XX :只在键已经存在时,才对键进行设置操作。

redis_第17张图片

  1. 多个客户端同时获取锁(setnx)

  2. 获取成功,执行业务逻辑{从db获取数据,放入缓存},执行完成释放锁(del)

  3. 其他客户端等待重试

@GetMapping("testLock")
public void testLock(){
    //1获取锁,setne
    Boolean lock = redisTemplate.opsForValue().setIfAbsent("lock", "111");
    //2获取锁成功、查询num的值
    if(lock){
        Object value = redisTemplate.opsForValue().get("num");
        //2.1判断num为空return
        if(StringUtils.isEmpty(value)){
            return;
        }
        //2.2有值就转成成int
        int num = Integer.parseInt(value+"");
        //2.3把redis的num加1
        redisTemplate.opsForValue().set("num", ++num);
        //2.4释放锁,del
        redisTemplate.delete("lock");

    }else{
        //3获取锁失败、每隔0.1秒再获取
        try {
            Thread.sleep(100);
            testLock();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

重启,服务集群,通过网关压力测试:

ab -n 1000 -c 100 http://192.168.140.1:8080/test/testLock

优化之UUID防误删

redis_第18张图片

redis_第19张图片

删除操作缺乏原子性

@GetMapping("testLockLua")
public void testLockLua() {
    //1 声明一个uuid ,将做为一个value 放入我们的key所对应的值中
    String uuid = UUID.randomUUID().toString();
    //2 定义一个锁:lua 脚本可以使用同一把锁,来实现删除!
    String skuId = "25"; // 访问skuId 为25号的商品 100008348542
    String locKey = "lock:" + skuId; // 锁住的是每个商品的数据

    // 3 获取锁
    Boolean lock = redisTemplate.opsForValue().setIfAbsent(locKey, uuid, 3, TimeUnit.SECONDS);

    // 第一种: lock 与过期时间中间不写任何的代码。
    // redisTemplate.expire("lock",10, TimeUnit.SECONDS);//设置过期时间
    // 如果true
    if (lock) {
        // 执行的业务逻辑开始
        // 获取缓存中的num 数据
        Object value = redisTemplate.opsForValue().get("num");
        // 如果是空直接返回
        if (StringUtils.isEmpty(value)) {
            return;
        }
        // 不是空 如果说在这出现了异常! 那么delete 就删除失败! 也就是说锁永远存在!
        int num = Integer.parseInt(value + "");
        // 使num 每次+1 放入缓存
        redisTemplate.opsForValue().set("num", String.valueOf(++num));
        /*使用lua脚本来锁*/
        // 定义lua 脚本
        String script = "if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('del', KEYS[1]) else return 0 end";
        // 使用redis执行lua执行
        DefaultRedisScript<Long> redisScript = new DefaultRedisScript<>();
        redisScript.setScriptText(script);
        // 设置一下返回值类型 为Long
        // 因为删除判断的时候,返回的0,给其封装为数据类型。如果不封装那么默认返回String 类型,
        // 那么返回字符串与0 会有发生错误。
        redisScript.setResultType(Long.class);
        // 第一个要是script 脚本 ,第二个需要判断的key,第三个就是key所对应的值。
        redisTemplate.execute(redisScript, Arrays.asList(locKey), uuid);
    } else {
        // 其他线程等待
        try {
            // 睡眠
            Thread.sleep(1000);
            // 睡醒了之后,调用方法。
            testLockLua();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

总结

  1. 加锁

    // 1. 从redis中获取锁,set k1 v1 px 20000 nx
    String uuid = UUID.randomUUID().toString();
    Boolean lock = this.redisTemplate.opsForValue()
          .setIfAbsent("lock", uuid, 2, TimeUnit.SECONDS);
    
    
  2. 使用lua释放锁

    // 2. 释放锁 del
    String script = "if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('del', KEYS[1]) else return 0 end";
    // 设置lua脚本返回的数据类型
    DefaultRedisScript<Long> redisScript = new DefaultRedisScript<>();
    // 设置lua脚本返回类型为Long
    redisScript.setResultType(Long.class);
    redisScript.setScriptText(script);
    redisTemplate.execute(redisScript, Arrays.asList("lock"),uuid);
    
    
  3. 重试

    Thread.sleep(500);
    testLock();
    
    

为了确保分布式锁可用,我们至少要确保锁的实现同时满足以下四个条件

- 互斥性。在任意时刻,只有一个客户端能持有锁。

- 不会发生死锁。即使有一个客户端在持有锁的期间崩溃而没有主动解锁,也能保证后续其他客户端能加锁。

- 解铃还须系铃人。加锁和解锁必须是同一个客户端,客户端自己不能把别人加的锁给解了。

- 加锁和解锁必须具有原子性。

新功能

ACL

简介

Redis ACL是Access Control List(访问控制列表)的缩写,该功能允许根据可以执行的命令和可以访问的键来限制某些连接。

在Redis 5版本之前,Redis 安全规则只有密码控制 还有通过rename 来调整高危命令比如 flushdb , KEYS* , shutdown 等。Redis 6 则提供ACL的功能对用户进行更细粒度的权限控制 :

(1)接入权限:用户名和密码

(2)可以执行的命令

(3)可以操作的 KEY

参考官网:https://redis.io/topics/acl

你可能感兴趣的:(后端,redis,java,数据库)