MATLAB语音去噪系统

目录

一、背景      

二、GUI页面

三、程序

3.1 LMS滤波程序

3.2 GUI程序

四、附录


一、背景      

  本文介绍了一种最佳的自适应滤波器结构,该结构采用最小均方差(LMS)作为判据,通过不断迭代自适应结构来调整得到最佳滤波器系数。并且,本文基于MATLAB的图形化语音去噪仿真系统。本文具体的研究内容如下:

(1)首先介绍了语音信号去噪的基本理论,并对常见的去噪算法进行了介绍,如傅里叶算法、短时傅里叶算法、小波算法。

(2)深入分析了自适应滤波的基本理论,并重点研究了LMS自适应滤波的语音信号去噪模型。

(3)设计了一个基于MATLAB的图形化语音去噪仿真系统,支持IIR、FIR、LMS自适应滤波等多种语音去噪算法。通过对比各类语音去噪算法的实验结果,本文发现LMS自适应滤波算法具有最好的去噪效果。

二、GUI页面

MATLAB语音去噪系统_第1张图片MATLAB语音去噪系统_第2张图片

三、程序

3.1 LMS滤波程序
function [yn,W,en]=filter_LMS(xn,dn,M,mu)
% 输入参数:
%     xn   输入的信号序列      (列向量)
%     dn   所期望的响应序列    (列向量)
%     M    滤波器的阶数        (标量)
%     mu   收敛因子(步长)      (标量)     要求大于0,小于xn的相关矩阵最大特征值的倒数    
%     itr  迭代次数            (标量)     默认为xn的长度,M
3.2 GUI程序
function pushbutton1_Callback(hObject,eventdata,handles)
[y,fs]=audioread('su.wav');
sound(y,fs);
n = length(y);
t = (0:n-1)/fs;
Y=fft(y,n);
subplot(2,2,2);plot(t,y);title('原始信号波形');
xlabel('时间/s');ylabel('幅值');
subplot(2,2,4);plot(abs(Y));title('原始信号频谱');
xlabel('采样点');ylabel('幅值');
% hObject    handle to pushbutton1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

等等,篇幅所限

四、附录

写作不易,感谢点赞,完整程序可留言。

代做领域包括:开关电源、最大功率点跟踪(恒电压法、电导增量法、爬山法、智能算法等)、并网逆变器控制、多目标优化算法(灰狼算法、粒子群、麻雀、哈里斯鹰、布谷鸟等等)、图像处理算法(MATLAB GUI等)、嵌入式、配电网无功优化(IEEE33、21、44节点等)等。

需要的同学私聊我~

你可能感兴趣的:(MATLAB工具箱使用,matlab,语音识别,开发语言)