- 索引的底层数据结构、B+树的结构、为什么InnoDB使用B+树而不是B树呢
因特麦克斯
数据库
索引的底层数据结构MySQL中常用的是Hash索引和B+树索引Hash索引:基于哈希表实现的,查找速度非常快,但是由于哈希表的特性,不支持范围查找和排序,在MySQL中支持的哈希索引是自适应的,不能手动创建B+树的结构B+树是一种高效的多路平衡树,适合磁盘存储和范围查询。它的结构特点包括数据集中在叶子节点、叶子节点连接成链表、内部节点仅存储键值和指针。在数据库和文件系统中,B+树被广泛应用于索引和
- 软件工程导论期末试题
答案资料
软件工程
软件工程导论期末考试试题一.选择(20分)1、瀑布模型把软件生命周期划分为八个阶段:问题的定义、可行性研究、软件需求分析、系统总体设计、详细设计、编码、测试和运行、维护。八个阶段又可归纳为三个大的阶段:计划阶段、开发阶段和(C)。A、详细计划B、可行性分析C、运行阶段D、测试与排错2、从结构化的瀑布模型看,在它的生命周期中的八个阶段中,下面的几个选项中哪个环节出错,对软件的影响最大(C)。A、详细
- 软件工程导论期末考试试题
答案资料
软件工程
软件工程导论期末考试试题一.选择1、瀑布模型把软件生命周期划分为八个阶段:问题的定义、可行性研究、软件需求分析、系统总体设计、详细设计、编码、测试和运行、维护。八个阶段又可归纳为三个大的阶段:计划阶段、开发阶段和(C)。A、详细计划B、可行性分析C、运行阶段D、测试与排错2、从结构化的瀑布模型看,在它的生命周期中的八个阶段中,下面的几个选项中哪个环节出错,对软件的影响最大(C)。A、详细设计阶段B
- 【Spring Security Oauth2】构建授权服务器(三):使用数据库存储客户端信息
apple_csdn
数据库spring服务器springcloud
一、环境准备1、回顾【SpringSecurityOauth2】构建授权服务器(一):内存模式2、Sql脚本createdatabased_study_oauth2charactersetutf8;used_study_oauth2;--auto-generateddefinitioncreatetableoauth_client_details(client_idvarchar(255)notn
- 第十三章 I 开头的术语
yaoxin521123
IRIS相关术语oracle数据库
文章目录第十三章I开头的术语安装目录(install-dir)实例(instance)实例认证(InstanceAuthentication)实例方法(instancemethod)实例化(instantiate)中间源代码(intermediatesourcecode)InterSystemsIRIS启动器(InterSystemsIRISlauncher)InterSystemsIRIS数据库
- Mongo数据库(一)
wangmy3028
Mongon
一、cappedcollectionsCappedcollections就是固定大小的collection。它有很高的性能以及队列过期的特性(过期按照插入的顺序).有点和"RRD"概念类似。Cappedcollections是高性能自动的维护对象的插入顺序。它非常适合类似记录日志的功能和标准的collection不同,你必须要显式的创建一个cappedcollection,指定一个collecti
- 如何使用jwt 完成注销(退出登录)功能
前端 贾公子
node.js
目录JSONWebTokens(JWT)注销Token过期很酷,但我还是想注销!结论JSONWebTokens(JWT)JSONWebTokens(JWT)是一种无状态处理用户身份验证的方法。什么意思?JWT帮助建立认证机制而不将身份验证状态存储在任何存储中,无论是会话内存还是数据库,因此,当检查用户的身份验证状态时,不需要访问会话内存或执行数据库查询。相反,根据你选择的用户payload生成to
- 一文解锁 NVM:Node版本随意切换不再发愁
一个小白的小白人
前端nvmnode.js前端node.js
前言搞前端开发的朋友肯定都对Node.js不陌生,它在咱们的工作里,就像得力助手,没了它,很多工作都没法顺利开展。但Node.js更新得那叫一个快,新特性、新优化不断冒出来。这就好比你本来开着一辆顺手的车,开得正稳呢,突然厂家说出了新款,性能更强,功能更多,你心里肯定痒痒,想试试新的。可实际情况是,每个项目就像不同的乘客,需求不一样。我之前做一个老项目维护,它就像个念旧的乘客,只认Node.js的
- Mongo数据库简介
chqj_163
作者:[佚名]-发布:2010-11-1810:16:59-来源:无忧技术网转载http://www.liqwei.com/database/other/2010/778.shtmlMongo是一个高性能,开源,无模式的文档型数据库,它在许多场景下可用于替代传统的关系型数据库或键/值存储方式。Mongo使用C++开发,提供了以下功能:◆面向集合的存储:适合存储对象及JSON形式的数据。◆动态查询:
- 监督学习、无监督学习和强化学习的特点和应用场景
BugNest
AI学习ai机器学习人工智能
在机器学习中,监督学习、无监督学习和强化学习是三种核心的学习范式,它们各自具有独特的特点和应用场景。以下是对这三种学习方法的详细对比和总结:监督学习(SupervisedLearning)特点:数据标注:训练数据包含明确的输入特征和对应的标签(目标输出)。学习方式:模型通过学习输入特征和标签之间的关系来进行训练,这种关系通常表现为一个映射函数。预测能力:一旦训练完成,模型能够对新的、未见过的输入数
- 【数据库】MongoDB深度解析与Python操作指南:从安装到实战操作全覆盖
易辰君
数据库数据库mongodb
目录前言一、MongoDB的特点二、Mongo的核心概念三、MongoDB的优劣势四、使用场景五、MongoDB与其他数据库的对比六、如何安装MongoDB七、数据库指令操作(一)基本数据库操作(1)连接MongoDB(2)显示所有数据库(3)选择数据库(4)显示当前数据库(二)集合操作(1)显示集合列表(2)创建集合(3)删除集合(三)文档(数据)操作(1)插入文档(2)查询文档(3)更新文档(
- AI在虚拟试衣中的应用:革新在线购物体验
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI在虚拟试衣中的应用:革新在线购物体验关键词:虚拟试衣,增强现实,在线购物,深度学习,图像识别,人工智能,用户交互1.背景介绍1.1问题由来随着电子商务的迅猛发展,在线购物已经成为人们日常生活的一部分。然而,由于无法亲身试穿,在线购物体验在满足用户个性化需求方面仍存在诸多不足。传统的网页图片展示和文字描述难以真实传达衣物的质地、颜色和尺寸。因此,虚拟试衣技术应运而生,成为电商平台上提升用户体验的
- 柳暗花明又一村:Seq2Seq编码器解码器架构
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
Seq2Seq,编码器-解码器,自然语言处理,机器翻译,文本生成,循环神经网络,长短期记忆网络1.背景介绍在人工智能领域,自然语言处理(NLP)始终是研究的热点之一。从机器翻译到文本摘要,从对话系统到问答机器人,Seq2Seq编码器-解码器架构在众多NLP任务中展现出强大的能力。传统的机器翻译方法通常依赖于统计模型和规则引擎,难以捕捉语言的复杂性和语义关系。随着深度学习的兴起,Seq2Seq架构为
- 【Golang】——Gin 框架与数据库集成详解
Linke-
Golanggolanggin数据库后端开发语言go
文章目录1.引言2.初始化项目2.1创建Gin项目2.2安装依赖3.数据库驱动安装与配置3.1配置数据库3.2连接数据库3.3在主函数中初始化数据库4.定义数据模型4.1创建用户模型4.2自动迁移5.使用GORM进行CRUD操作5.1创建用户5.2获取用户列表5.3更新用户信息5.4删除用户5.5路由配置6.数据库迁移与管理6.1数据迁移6.2手动迁移7.使用事务处理复杂操作8.优化与调试8.1数
- echarts样式设置笔记
weixin_45907672
vueecharts前端javascript
设置x轴的小标题xAxis:{type:'value',name:'DRGs组数',data:['2014','2015','2016','2017','2018','2019','2020']}设置y轴的小标题yAxis:[{type:'value',name:'预算总额',min:0,max:25,interval:5,//可以添加单位和后缀//axisLabel:{//formatter:'
- Hadoop---(6)Sqoop(数据传输)
Mr Cao
sqoop大数据
6.SqoopSqoop是一个用于hadoop数据和结构化数据之间转换的工具。全称SQL-TO-HADOOP.它可以把hadoop数据,包括hive和hbase存储的数据转化为结构化数据也就是数据库的数据,也可以把关系型数据库数据转化为hadoop数据这些转换操作全是通过Hadoop的MapTask来完成的,并不会涉及到Reduce操作。这是因为我们只是进行数据的拷贝,并不会对数据进行处理或者计算
- 《C++ 赋能 K-Means 聚类算法:开启智能数据分类之旅》
c++c#
在当今数字化浪潮汹涌澎湃的时代,人工智能无疑是引领科技变革的核心驱动力之一。而在人工智能的广袤天地中,数据分类与聚类作为挖掘数据内在价值、揭示数据潜在规律的关键技术手段,正发挥着前所未有的重要作用。K-Means聚类算法,作为数据聚类领域的经典之作,以其简洁高效的特性而备受瞩目。当我们将目光聚焦于C++这一强大而高效的编程语言时,会发现它与K-Means聚类算法的结合犹如天作之合,能够为数据处理与
- 《解锁AI黑科技:数据分类聚类与可视化》
程序猿阿伟
人工智能科技分类
在当今数字化时代,数据如潮水般涌来,如何从海量数据中提取有价值的信息,成为了众多领域面临的关键挑战。人工智能(AI)技术的崛起,为解决这一难题提供了强大的工具。其中,能够实现数据分类与聚类,并以可视化形式展现的AI技术,正逐渐成为各行业数据分析和决策的核心力量。数据分类与聚类:AI的核心技能数据分类是将数据划分到预先定义好的类别中,就像把图书馆里的书籍按照不同学科分类摆放,方便读者查找。比如在垃圾
- 微调特定于域的搜索的文本嵌入:附Python代码详解
人工智能
微调特定于域的搜索的文本嵌入:附Python代码详解阅读时长:20分钟发布时间:2025-02-02近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】嵌入模型将文本表示为具有语义意义的向量。尽管它们可以很容易地用于无数的用例(例如检索、分类),但通用嵌入模型在特定领域的任务上可能表现不佳。
- 【15-聚类分析入门:使用Scikit-learn进行K-means聚类】
是阿牛啊
机器学习回归预测大数据挖掘kmeans聚类python机器学习人工智能sklearn性能优化
文章目录前言K-means聚类的原理Scikit-learn中的K-means实现安装与导入生成模拟数据应用K-means聚类可视化聚类结果选择K的值总结前言 聚类分析是一种无监督学习方法,用于将数据集中的样本分组成若干个簇(cluster)。K-means是最广泛使用的聚类算法之一,其核心思想是将数据点分配到K个簇中,使得每个点到其簇中心的距离之和最小。在本文中,我们将介绍如何使用Scikit
- 银河麒麟(arm64)环境下通过docker安装redis,并实现数据整体迁移
一醉千秋
WebGISwebdocker容器运维
银河麒麟(arm64)环境下通过docker安装redis,并实现数据整体迁移硬件配置:麒麟9006C系统环境:银河麒麟桌面版v10sp1数据库:redis7.2.5(原来存储地图矢量切片文件)-------------------------------------------------------------------------------------------------------
- AI大模型基于LLM的Agent架构图解
AI产品经理
人工智能深度学习语言模型学习
Agent定义Agent是什么?Agent是一种能够自主决策、采取行动以达到某种目标的实体。AIAgent的确定义:基于人工智能(尤其是大模型)技术,能够感知和理解环境,并采取行动以完成目标的智能实体。Agent能干什么?AIAgent主要依托LLM模型和具体的业务场景来调用相应的工具来完成任务目标,智能化程度和行业贴合度会更明显。典型案例有什么?智能核保应用,如果解决方案搭载AIAgent能力,
- 【机器学习与数据挖掘实战】案例11:基于灰色预测和SVR的企业所得税预测分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘灰色预测SVR人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- 你怎么比较MongoDB、CouchDB及CouchBase?思维导图 代码示例(java 架构)
用心去追梦
mongodbjava架构
MongoDB、CouchDB和Couchbase是三种流行的NoSQL数据库,它们各自有着独特的设计哲学和技术特点。以下是它们之间的比较,涵盖了架构、数据模型、查询语言、复制机制、扩展性以及其他关键特性。MongoDB、CouchDB及Couchbase比较-思维导图概要您可以创建一个以“MongoDBvs.CouchDBvs.Couchbase”为核心节点的思维导图,并根据以下分类展开:概述简
- DeepSeek Janus-Pro:多模态AI模型的突破与创新
大模型之路
大模型(LLM)Deepseekdeepseekr1deepseekLLM强化学习
近年来,人工智能领域取得了显著的进展,尤其是在多模态模型(MultimodalModels)方面。多模态模型能够同时处理和理解文本、图像等多种类型的数据,极大地扩展了AI的应用场景。DeepSeek(DeepSeek-V3深度剖析:下一代AI模型的全面解读)公司最新发布的Janus-Pro模型,正是在这一领域的一次重大突破。本文将深入探讨Janus-Pro的技术特点、创新之处以及其在多模态任务中的
- 在 Ubuntu 下通过 Docker 部署 PSQL 服务器
明 庭
服务器ubuntudocker
嗨,各位技术爱好者!今天我们要聊的是如何在Ubuntu系统中通过Docker部署PostgreSQL(简称PSQL)服务器。对于那些还不熟悉Docker和PSQL的小伙伴,Docker是一个开源的容器化平台,可以让你轻松构建、部署和管理应用。而PostgreSQL是一个功能强大的开源关系数据库管理系统,以其稳定性和强大的功能而闻名。Docker和PSQL简介Docker:通过容器技术,Docker
- Python学习笔记 - 探索正则表达式对象和对象匹配
Mr数据杨
Python编程基础正则表达式python正则re
在文本处理和数据清洗任务中,正则表达式无疑是一把锋利的“瑞士军刀”。它不仅能够简洁地表达复杂的字符串匹配规则,还可以在各种编程语言中实现高效的文本处理。在Python中,re库提供了强大的正则表达式功能,允许开发者轻松进行模式匹配、数据提取、验证等操作。本教程将深入探讨Python中正则表达式的高级功能,尤其是如何使用正则表达式对象及其方法来高效处理文本。我们将详细讲解如何通过re.compile
- 【中科院1区】Matlab实现黏菌优化算法SMA-RF锂电池健康状态估计算法研究
matlab科研助手
matlab算法开发语言
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机物理应用机器学习内容介绍摘要锂离子电池作为一种重要的储能器件,在电动汽车、便携式电子设备等领域发挥着至关重要的
- 使用PGVector进行电影文档的向量搜索
hgSdaegva
python开发语言
在本文中,我们将演示如何使用Postgres数据库中的PGVector包来进行向量相似性搜索。具体而言,我们会展示如何使用PGVector创建一个向量存储,并结合自查询检索器(SelfQueryRetriever)来对电影文档集合进行检索。技术背景介绍PGVector是一个针对Postgres数据库的向量相似性搜索插件。它允许我们在数据库中存储向量并进行快速的相似性检索,非常适合于需要进行语义搜索
- Qpython+Flask监控添加发送语音中文信息功能
eybk
flaskpython后端
对Qpython+Flask实现对小孩学习的监控-CSDN博客中html页面进行改造,利用Ajax,提交一段文字,发送到数据库,再在服务器,发送该段文件给手机端,然手机端TTS朗读出来,增加了父母监控小孩学习,自定义提醒小孩的功能。一、index.html的更改。实时**学习情况图//设置定时器,每20秒(20000毫秒)刷新一次页面setInterval(function(){location.
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理