用Python实现智能策略结合分时电价、储能和电池SOC等条件,通过智能计算求解,实现收益最大化的功能

用Python实现智能策略结合分时电价、储能和电池SOC等条件,通过智能计算求解,实现收益最大化的功能。请注意,这只是一个简化的示例,实际应用中可能需要更复杂的算法和数据处理。

import numpy as np

# 分时电价数据
electricity_prices = np.array([0.1, 0.2, 0.3, 0.2, 0.1, 0.1, 0.1])

# 光伏发电功率数据
solar_power = np.array([0.5, 0.8, 1.2, 1.0, 0.6, 0.4, 0.2])

# 储能系统容量
battery_capacity = 10.0

# 电池SOC初始值
initial_soc = 5.0

# 定义收益函数
def calculate_profit(charge_amounts, discharge_amounts):
    soc = initial_soc
    profit = 0.0

    for i in range(len(electricity_prices)):
        # 判断是否需要充电或放电
        if solar_power[i] > electricity_prices[i] and soc < battery_capacity:
            # 光伏发电超过用电需求,需要充电
            charge_amount = min(battery_capacity - soc, solar_power[i] - electricity_prices[i])
            soc += charge_amount
            profit -= electricity_prices[i] * charge_amount
        elif solar_power[i] < electricity_prices[i] and soc > 0.0:
            # 用电需求超过光伏发电,需要放电
            discharge_amount = min(soc, electricity_prices[i] - solar_power[i])
            soc -= discharge_amount
            profit += electricity_prices[i] * discharge_amount

    return profit

# 定义遗传算法相关参数
population_size = 50
num_generations = 100
mutation_probability = 0.1

# 遗传算法初始化种群
population = np.random.uniform(0, 1, (population_size, len(electricity_prices) * 2))

# 遗传算法迭代
for _ in range(num_generations):
    # 计算适应度值
    fitness_values = np.zeros(population_size)
    for i in range(population_size):
        charge_amounts = population[i, :len(electricity_prices)]
        discharge_amounts = population[i, len(electricity_prices):]
        fitness_values[i] = calculate_profit(charge_amounts, discharge_amounts)

    # 选择操作
    selected_indices = np.random.choice(population_size, size=population_size, replace=True, p=fitness_values / np.sum(fitness_values))

    # 交叉操作
    for i in range(0, population_size, 2):
        parent1 = population[selected_indices[i]]
        parent2 = population[selected_indices[i+1]]
        crossover_point = np.random.randint(1, len(electricity_prices) - 1)
        population[i, :crossover_point] = parent1[:crossover_point]
        population[i+1, :crossover_point] = parent2[:crossover_point]
        population[i, crossover_point:] = parent2[crossover_point:]
        population[i+1, crossover_point:] = parent1[crossover_point:]

    # 变异操作
    for i in range(population_size):
        if np.random.random() < mutation_probability:
            mutation_point = np.random.randint(len(electricity_prices))
            population[i, mutation_point] = np.random.uniform(0, 1)

# 计算最佳策略和最大收益
best_strategy_index = np.argmax(fitness_values)
best_strategy = population[best_strategy_index]
charge_amounts = best_strategy[:len(electricity_prices)]
discharge_amounts = best_strategy[len(electricity_prices):]
max_profit = calculate_profit(charge_amounts, discharge_amounts)

print("最大收益为:", max_profit)
print("最佳策略为:", best_strategy)

这段代码中,我们首先定义了分时电价数据、光伏发电功率数据、储能系统容量和电池SOC初始值。然后,我们使用遗传算法来寻找最佳策略,通过迭代选择、交叉和变异操作来优化种群中的个体。最后,我们计算最佳策略和最大收益,并输出结果。

请注意,这只是一个简化的示例代码,实际应用中可能需要根据具体需求进行更复杂的算法设计和参数调整。另外,遗传算法的性能可能受到问题规模、算法参数等因素的影响,因此在实际使用中需要进行充分的测试和优化。

你可能感兴趣的:(python,开发语言)