- MCP与Sequential Thinking:系统问题的分解与解决之道
Echo_Wish
Python进阶python人工智能算法
MCP与SequentialThinking:系统问题的分解与解决之道引言:复杂问题背后的逻辑思维在面对复杂问题时,我们常常感到手足无措,尤其是在需要将任务分解为多个步骤时。这是对个人思维能力的极大挑战,而掌握有效的思维工具则可以让事情事半功倍。今天我们讨论的两个工具:MCP(MutuallyExclusiveCollectivelyExhaustive)和SequentialThinking(顺
- The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models
UnknownBody
LLMDailyCausalandReasoning语言模型人工智能
文章主要内容总结本文围绕大推理模型(LRMs)的推理能力展开系统研究,通过可控谜题环境分析其在不同问题复杂度下的表现,揭示其优势与局限性:研究背景与问题:当前LRMs(如OpenAIo1/o3、DeepSeek-R1等)虽在推理基准测试中表现提升,但对其底层能力、缩放特性及局限性的理解不足。现有评估依赖数学和编码基准,存在数据污染且缺乏对推理轨迹的深度分析。研究方法:采用可控谜题环境(如汉诺塔、跳
- 系统、架构、结构思维辨析
深海科技服务
IT应用探讨架构大数据服务器linux程序人生
一、什么是系统、架构、结构思维系统式思维、架构式思维和结构化思维都是解决复杂问题的重要思维方式,它们之间既有联系又有区别。1.系统式思维(SystemsThinking)定义:系统式思维是一种宏观的、整体性的思考方式,它关注事物作为一个整体的运作方式,以及其组成部分之间如何相互关联、相互影响。它强调理解事物内部的结构、模式、周期和反馈回路,而不是孤立地看待某个问题或某个部分。核心思想:整体性:看到
- 【AI论文】GLM-4.1V-思考:借助可扩展强化学习实现通用多模态推理
东临碣石82
人工智能
摘要:我们推出GLM-4.1V-Thinking这一视觉语言模型(VLM),该模型旨在推动通用多模态推理的发展。在本报告中,我们分享了在以推理为核心的训练框架开发过程中的关键发现。我们首先通过大规模预训练开发了一个具备显著潜力的高性能视觉基础模型,可以说该模型为最终性能设定了上限。随后,借助课程采样强化学习(ReinforcementLearningwithCurriculumSampling,R
- Cline中配置MCP
Alexon Xu
MCP
1、自动安装MCP默认AI生成的配置会报错:spawnnpxENOENTspawnnpxENOENT,然后排查了npx安装都是OK的,需要使用cmd运行npx,配置如下:{"mcpServers":{"sequentialthinking":{"autoApprove":[],"disabled":false,"timeout":60,"command":"cmd.exe","args":["/c
- 深入理解reeze/tipi项目中的词法分析与语法分析技术
焦习娜Samantha
深入理解reeze/tipi项目中的词法分析与语法分析技术tipiThinkingInPHPInternals,AnopenbookonPHPInternals项目地址:https://gitcode.com/gh_mirrors/ti/tipi引言在编程语言实现领域,词法分析和语法分析是构建编译器或解释器的关键环节。本文将基于reeze/tipi项目中的相关内容,深入浅出地讲解这些核心技术原理。
- Diff-Retinex: Rethinking Low-light Image Enhancement with A Generative Diffusion Model 论文阅读
钟屿
论文阅读人工智能深度学习学习图像处理计算机视觉
Diff-Retinex:用生成式扩散模型重新思考低光照图像增强摘要本文中,我们重新思考了低光照图像增强任务,并提出了一种物理可解释的生成式扩散模型,称为Diff-Retinex。我们的目标是整合物理模型和生成网络的优点。此外,我们希望通过生成网络补充甚至推断低光照图像中缺失的信息。因此,Diff-Retinex将低光照图像增强问题表述为Retinex分解和条件图像生成。在Retinex分解中,我
- 【番外】 AI 时代应具备的四大核心能力
成都犀牛
人工智能大模型人工智能机器学习
四大核心能力AI思维、整合力、引导力、判断力另:如果想快速吸收,可以直接下拉到最后看总结1.AI思维(AIThinking)AI思维是人工智能模型在执行任务时所展现的“思考”方式,是其内部决策逻辑和数据处理能力的体现。算法思维(AlgorithmicThinking):解释:指AI理解和执行决策逻辑的能力。这包括理解任务的内在结构,将问题分解为可处理的步骤,并按照预设或学习到的算法进行处理。它关注
- 论文阅读:arxiv 2025 OThink-R1: Intrinsic Fast/Slow Thinking Mode Switching for Over-Reasoning Mitigation
CSPhD-winston-杨帆
论文阅读
总目录大模型安全相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328https://www.doubao.com/chat/8815924393371650https://arxiv.org/pdf/2506.02397#page=17.09OThink文章目录速览研究背景与问题核心思路与方法实验结果结论与意义速览这篇论文聚焦于
- 论文阅读:arxiv 2025 Not All Tokens Are What You Need In Thinking
总目录大模型安全相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328https://arxiv.org/pdf/2505.17827https://www.doubao.com/chat/8814790364572162文章目录速览研究背景提出的解决方案:条件token选择(CTS)实验结果核心贡献研究局限总结速览这篇论文主要探
- CppCon 2016 学习:Lightweight Object Persistence With Modern C++
虾球xz
CppCon学习c++开发语言
你给出的这段文字是某个演讲、论文或者技术文档的概要(Overview)部分,内容主要是关于内存分配器(allocator)设计以及**对象持久化(objectpersistence)**的一些思路。让我帮你逐条解析和理解:Overview(概要)•Goals(目标)Describeawayofthinkingaboutallocatordesignthatmaybehelpful描述一种设计内存分
- ✨如何在 vLLM 中取消 Qwen3 的 Thinking 模式
杨靳言先
人工智能pythonchatgpt自然语言处理pytorch
如何在vLLM中取消Qwen3的Thinking模式在使用Qwen3模型与vLLM(VeryLargeLanguageModel)进行推理服务时,你可能会发现模型默认会输出类似“我正在思考……”的提示内容。这种行为被称为Thinking模式。如果你希望跳过这些提示内容,直接返回模型结果,本文将介绍两种实现方式。什么是Thinking模式?Thinking模式是Qwen3在推理时默认输出的一种提示语
- fastadmin发送邮箱提示“SMTP Server did not respond with anything I recognized”
爱吃西红柿!
php
修改vendor/txthinking/mailer/src/Mailer/SMTP.php亲测有效
- 17、Swift框架微调实战(2)-QWQ-32B LORA微调cot数据集
Andy_shenzl
大模型学习SwiftQWQ微调LORA
1、QWQ-32B介绍1.1基本介绍QwQ是Qwen系列的大模型之一,专注于推理能力(reasoning)。相比于传统的指令微调(instruction-tuned)模型,QwQ具备思考与推理(thinkingandreasoning)的能力,因此在各种下游任务(特别是复杂问题)上,能实现显著的性能提升。QwQ-32B是该系列的中等规模推理模型,其性能可媲美当前最先进的推理模型,如DeepSeek
- 大模型现象级发现-2025年上半年 资料收集
CSPhD-winston-杨帆
人工智能
相关资料让QwQ思考模型-不思考的小技巧2025-05-27最新实验:不听人类指令OpenAI模型拒绝自我关闭https://x.com/PalisadeAI/status/1926084635903025621公众号qwen3的致命幻觉!大模型微调会思考的大模型更不听话,我的豆包失控了…WhenThinkingFails:ThePitfallsofReasoningforInstruction-
- 多目标跟踪笔记2023
AI算法网奇
数据结构与算法目标跟踪笔记人工智能
目录cvpr2023多目标跟踪算法汇总:MixFormerV2ovtrack模型284MMotionTrackFocusOnDetails:OnlineMulti-objectTrackingwithDiverseFine-grainedRepresentation1、摘要2、方法Observation-CentricSORT:RethinkingSORTforRobustMulti-Object
- 图文检索(1):Rethinking Benchmarks for Cross-modal Image-text Retrieval
简简单单的貔貅
图文检索深度学习计算机视觉
RethinkingBenchmarksforCross-modalImage-textRetrieval摘要1引言2相关工作2.1Image-Textretrieval2.2Image-TextDatasets3方法3.1更新图像候选池3.1.1准备候选图像3.1.2搜索相似的图像3.1.3组装相似的图像集3.2对粗粒度文本进行翻新3.2.1找到粗粒度的文本3.2.2提示生成细节3.2.3合并新
- LeapVAD:通过认知感知和 Dual-Process 思维实现自动驾驶飞跃——论文阅读
一点.点
#自动驾驶人工智能语言模型
《LeapVAD:ALeapinAutonomousDrivingviaCognitivePerceptionandDual-ProcessThinking》2025年1月发表,来自浙江大学、上海AI实验室、慕尼黑工大、同济大学和中科大的论文。尽管自动驾驶技术取得了显著进步,但由于推理能力有限,数据驱动的方法仍然难以应对复杂的场景。与此同时,随着视觉语言模型的普及,知识驱动的自动驾驶系统也得到了长
- NoThinking vs Thinking:推理模型无需思考也能有效
王哥儿聊AI
大模型论文阅读解析人工智能语言模型自然语言处理
摘要:最近的大型语言模型(LLMs)显著提升了推理能力,主要是通过在生成过程中包含一个明确且冗长的“思考”过程来实现的。在本文中,我们质疑这种明确的思考过程是否真的必要。我们使用最先进的DeepSeek-R1-Distill-Qwen模型,发现通过简单的提示绕过思考过程(记作NoThinking)可以出人意料地有效。在控制token数量的情况下,NoThinking在多个具有挑战性的推理数据集上优
- Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models
绒绒毛毛雨
搜索推荐语言模型人工智能自然语言处理
文章目录摘要1引言2背景:长思维链推理模型与过度思考现象2.1思维链(CoT)推理2.2长CoT推理模型中的过度思考问题3基于模型的高效推理3.1基于长度奖励设计的强化学习(RL)3.2使用可变长度CoT数据的监督微调(SFT)3.2.1构建可变长度CoT推理数据集3.2.2微调方法4基于推理输出的高效推理4.1将推理步骤压缩为更少的潜在表示4.2推理过程中的动态推理范式4.2.1基于显式标准的动
- 进阶篇09self-Ask-大模型
monday_CN
机器学习大数据人工智能
AIAgent技术框架进阶教程:SelfAsk深度解析系列课程进度已完成章节:9章当前更新内容:SelfAsk框架详解即将更新:ThinkingandSacrifici框架解析目录知识回顾SelfAsk框架原理实战代码解析版本迁移指南最佳实践建议常见问题解答1.知识回顾PlanandExecute核心要点需要工具直接处理未完成已完成用户请求任务分解子任务列表执行判断外部API调用内部计算状态更新完
- AI Agent(十一)-Camel基于AI的图像内容识别
AI_Auto
人工智能人工智能AIAgent
AIAgent系列【十一】一.Camel库函数修复二、代码实现一.Camel库函数修复对于camel-ai版本为0.2.22的安装包程序,base_model中函数preprocess_messages,此函数的作用是对消息列表进行预处理,主要目的是在将消息发送到模型API之前,移除消息中的“思考内容”(thinkingcontent),并执行其他模型特定的预处理操作。需要修改的文件地址为:…Li
- TokenFormer: Rethinking Transformer Scaling with Tokenized Model Parameters
不打灰的小刘
dailypapertransformer深度学习人工智能语言模型
基本信息原文链接:https://arxiv.org/abs/2410.23168作者:HaiyangWang,YueFan,MuhammadFerjadNaeem,YongqinXian,JanEricLenssen,LiweiWang,FedericoTombari,BerntSchiele️关键词:ProgressiveScaling,Attentionmechanism分类:机器学习摘要中
- Tokenformer: 下一代Transformer架构
码农Q!
transformer深度学习人工智能agiailangchainchatgpt
1.导言Transformer架构已经成为当今大模型的基石,不管是NLP还是CV领域,目前的SOTA模型基本都是基于Transformer架构的,比如NLP中目前的各种知名大模型,或者CV中的Vit等模型本次介绍的论文标题为:Tokenformer:RethinkingTransformerScalingwithTokenizedModelParameters,”顾名思义,本文提出了Tokenfo
- 月之暗面再次开源Kimi大模型——Kimi-VL-A3B-Instruct 和 Kimi-VL-A3B-Thinking
吴脑的键客
机器人技术DeepSeek开源人工智能
我们介绍的Kimi-VL,是一种高效的开源专家混合物(MoE)视觉语言模型(VLM),它具有先进的多模态推理能力、长语境理解能力和强大的代理能力,而在其语言解码器(Kimi-VL-A3B)中只需激活2.8B个参数。Kimi-VL在各个具有挑战性的领域都表现出了强劲的性能:作为一种通用的视觉语言模型,Kimi-VL在多轮代理交互任务(例如OSWorld)中表现出色,取得了与旗舰模型相当的先进成果。此
- 利用解析差异SSRF + sqlite注入 + waf逻辑漏洞 -- xyctf 2025 fate WP
A5rZ
网络安全
本文章附带TP(ThinkingProcess)!#!/usr/bin/envpython3#导入所需的库importflask#Flaskweb框架importsqlite3#SQLite数据库操作importrequests#HTTP请求库importstring#字符串处理importjson#JSON处理app=flask.Flask(__name__)#创建Flask应用实例blackl
- 书籍-《意志与责任:人工智能的法律思考》
人工智能机器学习机器人自动驾驶
书籍:WillandResponsibility:LegalThinkingofArtificialIntelligence作者:JunGu,ChunmingXu出版:Springer编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《意志与责任:人工智能的法律思考》01书籍介绍本书深入探究了作者在人工智能(AI)领域的法律思考。当下,人工智能在科技行业以及公众群体中引发了日益浓厚的兴趣。作为“
- 投机解码EAGLE精读
rommel rain
transformer语言模型人工智能
题目:EAGLE:SpeculativeSamplingRequiresRethinkingFeatureUncertainty[ICML2024]发表于24.02链接:https://arxiv.org/abs/2401.15077本文一作对该工作的讲解:智源社区活动LLM推理是自回归的,这个自回归是从token层开始的自回归(也就是词元被转成嵌入的那一层)。而EAGLE将这一自回归延后到了特征
- 后真相时代的critical thinking:辨识真相的能力培养
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
嗯,用户希望我写一篇关于后真相时代培养批判性思维的文章,而且结构非常详细,包括背景介绍、核心概念、算法原理等等。我得先理清楚每个部分需要涵盖的内容。首先,标题是《后真相时代的criticalthinking:辨识真相的能力培养》,关键词应该包括后真相、批判性思维、信息辨别、逻辑分析、证据评估、算法原理。摘要部分要简明扼�地总结文章的核心,强调批判性思维的重要性及其在各个领域的应用。接下来是背景介绍
- claude-3-7-sonnet-20250219 支持深度思考,流式输出
徐同保
前端javascript开发语言
node代码(美国服务器):constchatAnthropicAiOnAzureForStream=async(req,res)=>{let{messages,apiKey='sk-xxx',type='1',thinking=false}=req.bodyres.setHeader('Content-Type','text/event-stream;charset=utf-8')res.set
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&