序
本文主要研究一下hystrix的BucketedCounterStream
BucketedCounterStream
hystrix-core-1.5.12-sources.jar!/com/netflix/hystrix/metric/consumer/BucketedCounterStream.java
/**
* Abstract class that imposes a bucketing structure and provides streams of buckets
*
* @param type of raw data that needs to get summarized into a bucket
* @param type of data contained in each bucket
* @param
- 这里的构造器主要初始化bucketedStream,主要是对HystrixEventStream进行observe,然后进行window操作,在进行flatMap
- window操作的timespan参数为bucketSizeInMs,其计算公式如下
final int counterMetricWindow = properties.metricsRollingStatisticalWindowInMilliseconds().get();
final int numCounterBuckets = properties.metricsRollingStatisticalWindowBuckets().get();
final int counterBucketSizeInMs = counterMetricWindow / numCounterBuckets;
- BucketedCounterStream有两个直接的子类,也是抽象类,分别是BucketedRollingCounterStream及BucketedCumulativeCounterStream
BucketedRollingCounterStream
hystrix-core-1.5.12-sources.jar!/com/netflix/hystrix/metric/consumer/BucketedRollingCounterStream.java
/**
* Refinement of {@link BucketedCounterStream} which reduces numBuckets at a time.
*
* @param type of raw data that needs to get summarized into a bucket
* @param type of data contained in each bucket
* @param type of data emitted to stream subscribers (often is the same as A but does not have to be)
*/
public abstract class BucketedRollingCounterStream extends BucketedCounterStream {
private Observable sourceStream;
private final AtomicBoolean isSourceCurrentlySubscribed = new AtomicBoolean(false);
protected BucketedRollingCounterStream(HystrixEventStream stream, final int numBuckets, int bucketSizeInMs,
final Func2 appendRawEventToBucket,
final Func2 reduceBucket) {
super(stream, numBuckets, bucketSizeInMs, appendRawEventToBucket);
Func1, Observable> reduceWindowToSummary = new Func1, Observable>() {
@Override
public Observable call(Observable window) {
return window.scan(getEmptyOutputValue(), reduceBucket).skip(numBuckets);
}
};
this.sourceStream = bucketedStream //stream broken up into buckets
.window(numBuckets, 1) //emit overlapping windows of buckets
.flatMap(reduceWindowToSummary) //convert a window of bucket-summaries into a single summary
.doOnSubscribe(new Action0() {
@Override
public void call() {
isSourceCurrentlySubscribed.set(true);
}
})
.doOnUnsubscribe(new Action0() {
@Override
public void call() {
isSourceCurrentlySubscribed.set(false);
}
})
.share() //multiple subscribers should get same data
.onBackpressureDrop(); //if there are slow consumers, data should not buffer
}
@Override
public Observable observe() {
return sourceStream;
}
/* package-private */ boolean isSourceCurrentlySubscribed() {
return isSourceCurrentlySubscribed.get();
}
}
- 基于父类的bucketedStream定义了用于observe的sourceStream,对bucketedStream进行了window及flatMap处理
- window操作采用的是count及skip参数,count参数值为numBuckets,skip参数值为1
BucketedCumulativeCounterStream
hystrix-core-1.5.12-sources.jar!/com/netflix/hystrix/metric/consumer/BucketedCumulativeCounterStream.java
/**
* Refinement of {@link BucketedCounterStream} which accumulates counters infinitely in the bucket-reduction step
*
* @param type of raw data that needs to get summarized into a bucket
* @param type of data contained in each bucket
* @param type of data emitted to stream subscribers (often is the same as A but does not have to be)
*/
public abstract class BucketedCumulativeCounterStream extends BucketedCounterStream {
private Observable sourceStream;
private final AtomicBoolean isSourceCurrentlySubscribed = new AtomicBoolean(false);
protected BucketedCumulativeCounterStream(HystrixEventStream stream, int numBuckets, int bucketSizeInMs,
Func2 reduceCommandCompletion,
Func2 reduceBucket) {
super(stream, numBuckets, bucketSizeInMs, reduceCommandCompletion);
this.sourceStream = bucketedStream
.scan(getEmptyOutputValue(), reduceBucket)
.skip(numBuckets)
.doOnSubscribe(new Action0() {
@Override
public void call() {
isSourceCurrentlySubscribed.set(true);
}
})
.doOnUnsubscribe(new Action0() {
@Override
public void call() {
isSourceCurrentlySubscribed.set(false);
}
})
.share() //multiple subscribers should get same data
.onBackpressureDrop(); //if there are slow consumers, data should not buffer
}
@Override
public Observable observe() {
return sourceStream;
}
}
- 基于父类的bucketedStream定义了用于observe的sourceStream,对bucketedStream进行了scan及skip操作
- scan与reduce的区别在于scan每操作完一次就会通知消费者,reduce是一口气操作完再通知消费者
- 这里scan参数为getEmptyOutputValue(),为空数组用于累加,skip值为numBuckets
小结
- hystrix的BucketedCounterStream有两个直接的子类,BucketedRollingCounterStream及BucketedCumulativeCounterStream
- BucketedRollingCounterStream,采取的是window及flatMap操作,这里通过window来达到rolling的效果,其skip参数表示对原生数列,其开始的元素间隔是多少,比如skip为3,window的count为5,那么第一批window就是[1,2,3,4,5],第二批window就是[4,5,6,7,8]
- BucketedCumulativeCounterStream,采取的是scan及skip操作,其cumulative的效果是通过scan函数来实现的,然后通过skip操作丢弃掉最开始的numBuckets个数据。
rolling及cumulative使用的是rxjava的window及scan操作来实现,看起来比较简洁。
doc
- rxdocs-scan
- rxdocs-skip
- rxjava scan 与reduce区别