- 深度剖析DeepSeek本地部署:技术、实践与优化策略
Abossss
AI论文pythonai人工智能
一、引言1.1研究背景与意义近年来,人工智能技术以迅猛之势蓬勃发展,成为推动各行业变革的核心力量。其中,大语言模型(LLMs)作为人工智能领域的关键技术,在自然语言处理、智能客服、内容创作等众多领域展现出了强大的应用潜力,引发了学术界和产业界的广泛关注。OpenAI的GPT系列模型凭借其出色的语言理解与生成能力,在全球范围内掀起了AI应用的热潮;Google的BERT模型则在自然语言理解任务中取得
- DeepSeek+WPS/Office手把手教你玩转智能办公
herosunly
DeepSeek从入门到精通deepseek大模型人工智能officewps智能办公
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法Q大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
- 深度学习框架探秘|TensorFlow vs PyTorch:AI 框架的巅峰对决
紫雾凌寒
智启前沿:AI洞察・创未来人工智能深度学习tensorflowpytorchai
在深度学习框架中,TensorFlow和PyTorch无疑是两大明星框架。前面两篇文章我们分别介绍了TensorFlow(点击查看)和PyTorch(点击查看)。它们引领着AI开发的潮流,吸引着无数开发者投身其中。但这两大框架究竟谁更胜一筹?是TensorFlow的全面与稳健,还是PyTorch的灵活与便捷?让我们一同深入剖析,探寻答案。在深度学习框架中,TensorFlow和PyTorch无疑是
- Ollama容器+打造DeepSeek-R1-7B大模型
码哝小鱼
AI大模型docker运维语言模型
1、获取Ollama官方镜像1.1在线拉取镜像#dokcerpullollama/ollama:0.5.71.2导入离线镜像#tar-zxfollama0.5.7_x86.tar.gz#dokcerload-iollama0.5.7.tar2、执行以下命令创建与启动ollama#dockerrun-dp8880:11434--nameollama\-eOLLAMA_HOST=0.0.0.0:114
- Day47(补)【软考】2022年下半年软考软件设计师综合知识真题-计算机软件知识2
一个一定要撑住的学习者
#软件设计师算法
文章目录2022年下半年软考软件设计师综合知识真题第1章计算机系统基础知识(18/38)计算机软件知识2-6/6(其中一个做过)哲学概念及收敛思维:分母为0的故障哲学分类,考事务故障集合除数为零是否属于事务故障?哲学概念及收敛思维:Python3列表截取[max,min,-n]的哲学理解,输入-,考集合排列从大到小,range和list输入,考结束值min不在集合中哲学概念及收敛思维:**栈帧的核
- Java关键字static
我尽力学
java开发语言
Java关键字static一、static是什么?static是Java中的关键字,用于修饰类成员(变量、方法、代码块、内部类)或实现静态导包。它的核心作用是让成员脱离对象依赖,直接通过类访问。好比班级里的公共黑板(static修饰的成员),所有学生(对象)共用同一块黑板;而每个学生的课桌(普通成员)则是各自独立的。二、static的五大用法1.静态变量:共享的“公共财产”特点:所有对象共享同一份
- 为什么DevOps很好,但却很难落地
devops
DevOps的优势在于加速交付、提升协作效率、增强系统稳定性,但落地难的核心原因集中在文化冲突、技术复杂性、流程脱节三大层面。以文化冲突为例,传统开发与运维团队的“部门墙”是最大阻碍。开发团队追求快速迭代,而运维团队强调稳定可控,两者的目标天然对立。根据2023年《全球DevOps现状报告》,78%的企业承认“跨部门协作不足”是转型失败的主因。正如GeneKim在《DevOps实践指南》中所说:“
- Python自学攻略:AI时代的高效学习法 —— 如何用大模型快速上手编程
优化小秦
人工智能
在AI技术爆发的今天,学习Python已不再是传统的“看书+敲代码”模式。借助大语言模型(如Deepseek、GPT、Claude、Kimi、豆包等),学习效率可以提升数倍。本文将结合实操路径、工具链和避坑指南,为你提供一套AI时代的Python速成方案。一、为什么AI能让Python学习效率飙升?实时纠错与解释传统学习:遇到报错需反复查资料,耗时且挫败感强AI辅助:直接将错误信息丢给大模型,1秒
- 【大模型】阿里云百炼平台对接DeepSeek-R1大模型使用详解
小码农叔叔
AI大模型实战与应用DeepSeek-R1使用阿里云对接DeepSeek百炼平台使用DeepSeekDeepSeek使用详解DeepSeek-R1使用详解DeepSeek-R1
目录一、前言二、DeepSeek简介2.1DeepSeek是什么2.2DeepSeekR1特点2.2.1DeepSeek-R1创新点2.3DeepSeekR1应用场景2.4与其他大模型对比三、阿里云百炼大平台介绍3.1阿里云百炼大平台是什么3.2阿里云百炼平台主要功能3.2.1应用场景3.3为什么选择阿里云百炼平台四、前置准备4.1注册百炼平台账户4.2获取apikey4.3本地安装python环
- python分支结构说课_Python程序设计 循环结构说课稿
程籽籽
python分支结构说课
循环结构程序设计——实现复杂计算程序一、说教材1.教材地位分析教材是由湖北省中小学教材编写组编写的义务教育教科书《信息技术》。其中《循环结构程序设计》是初中信息技术课本第三册的第七单元“Python程序设计(下)”的第26课的内容。本节课的内容是在上节课选择结构的基础上进行的。循环结构作为Python程序设计的三大基本结构之一,有助于学生更好的解决生活中的实际问题,通过这节课的学习,学生会对循环结
- python分支结构说课_Python程序设计 选择结构说课稿
爱吃可颂
python分支结构说课
选择结构程序设计——偏胖还是偏瘦?一、说教材1.教材地位分析教材是由湖北省中小学教材编写组编写的义务教育教科书《信息技术》。其中《选择结构程序设计》是初中信息技术课本第三册的第七单元“Python程序设计(上)”的第25课的内容。本节课的内容是在上节课顺序结构的基础上进行的。选择结构作为Python程序设计的三大基本结构之一,有助于学生更好的解决生活中的实际问题,通过这节课的学习,学生会对顺序结构
- 前端三大主流框架:React、Vue、Angular
m0_54851477
前端react.jsvue.js
文章目录一、React、Vue、Angular简介二、React初始化案例三、Vue初始化案例四、Angular初始化案例五、相关链接一、React、Vue、Angular简介前端三大主流框架分别是Angular、React和Vue。以下是这三个框架的详细概述:Angular:Angular原名AngularJS,诞生于2009年,由Google开发并维护。它是一个完整的框架,提供了数据绑定、组件
- Hadoop综合项目——二手房统计分析(可视化篇)
WHYBIGDATA
大数据项目hadoop大数据
Hadoop综合项目——二手房统计分析(可视化篇)文章目录Hadoop综合项目——二手房统计分析(可视化篇)0、写在前面1、数据可视化1.1二手房四大一线城市总价Top51.2统计各个楼龄段的二手房比例1.3统计各个城市二手房标签的各类比例1.4统计各个城市各个楼层的平均价格1.5统计各个城市二手房优势的各类比例1.6统计各个城市二手房数量和关注人数的关系1.7统计各个城市二手房规格的各类比例1.
- Mooncake:kimi后端推理服务的架构设计
风生水气
大模型应用技术栈大模型人工智能ai语言模型后端
前言本文依托论文《Mooncake:AKVCache-centricDisaggregatedArchitectureforLLMServing》来讲解kimi的后端服务架构Mooncake,并按照自己的思路来梳理论文中的一些关键信息。背景服务端面临的问题随着大模型技术越来越强,很多应用都是以Maas(ModelasaService)的方式对外提供服务,服务端的能力受模型的能力约束。对于C端应用来
- 《深入浅出多模态》 (五):多模态经典模型ALBEF
GoAI
深入浅出多模态多模态大模型LLM深度学习人工智能
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介绍:</
- KTransformers:告别天价显卡!国产框架让单卡24G显存跑DeepSeek-R1 671B大模型:推理速度飙升28倍
蚝油菜花
每日AI项目与应用实例人工智能开源
❤️如果你也关注AI的发展现状,且对AI应用开发感兴趣,我会每日分享大模型与AI领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!微信公众号|搜一搜:蚝油菜花“还在为千亿模型租天价显卡?清华团队用CPU/GPU协同计算,让4090跑起671B参数全量模型!”大家好,我是蚝油菜花。如果你也经历过——看着API调用账单瑟瑟发抖,微调一次模型吃掉半月算力预算️盯着OOM报错抓狂,为了
- 【大模型实战】零门槛入门AgentScope多智能体游戏开发:和Agent玩飞花令
南七小僧
服务器开发网站开发人工智能数据库服务器运维
1.项目起因最近,阿里开源了一款全新的多智能体协同的Multi-Agent应用框架-AgentScope,早先的单智能体还只能完成对话类等一些简单的应用,通过调用外部API(如搜索绘画配音等)也只是拓展了单智能体的能力边界。如果能够调用多个智能体,并做好多个智能体之间的协同配合,就能够打造出内容和样式更加丰富的应用。中国古典诗词中的经典游戏(如飞花令尾字接龙即景联诗九宫格)等,非常考验选手的知识储
- 教您如何选购触觉力反馈设备
宋13810279720
力反馈机器人人工智能计算机外设3d硬件工程
触觉力反馈技术是指在人机交互过程中,计算机对用户的输入做出响应,并通过力反馈设备作用于用户的过程。它是一种机械装置表现出来的反作用力,将力反馈设备与环境中物体交互的信息转化成用户能够感知的力的效果,如触碰物体的阻力、举起物体的重力和“触摸”物体表面的摩擦力。可以沟通交流,力反馈全系列。目前全球市场上基本被三大品牌垄断。分别为:美国3Dsystems(Geomagic/Sensable),瑞士For
- 英码科技基于昇腾算力实现DeepSeek离线部署
英码科技
科技
DeepSeek-R1模型以其创新架构和高效能技术迅速成为行业焦点。如果能够在边缘进行离线部署,不仅能发挥DeepSeek大模型的效果,还能确保数据处理的安全性和可控性。英码科技作为AI算力产品和AI应用解决方案服务商,积极响应市场需求,率先完成了昇腾系列产品与DeepSeek模型的深度适配。从硬件调校到软件优化,英码科技确保了昇腾系列产品的稳定、高效适配,为用户提供了更具竞争力的部署选择。Dee
- 95%人都不知道的,或许是最全DeepSeek 提示词合集、使用技巧与代码实现全攻略【建议收藏】
大F的智能小课
python开发语言人工智能算法
一、引言DeepSeek作为一款强大的AI大语言模型工具,凭借其高效、灵活的特点,受到了众多开发者和用户的青睐。本文将全面介绍DeepSeek的提示词合集、使用技巧以及代码实现方法,帮助读者更好地利用这一工具,提升工作效率和创造力。二、DeepSeek提示词合集(一)代码处理代码改写:优化代码,进行纠错、注释、调优等。示例:请对以下代码进行优化,提高运行效率:[代码片段]对代码进行修改,来实现纠错
- 【vLLM 学习】安装
vLLM是一款专为大语言模型推理加速而设计的框架,实现了KV缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多vLLM中文文档及教程可访问→https://vllm.hyper.ai/vLLM是一个Python库,包含预编译的C++和CUDA(12.1)二进制文件。依赖环境操作系统:LinuxPython:3.8-3.12GPU:计算能力7.0或更高(例如V100、T4、RTX20xx、A100、L
- Android App开发之Jetpack架构,带你全面理解View的绘制流程
m0_66144992
程序员架构移动开发android
在UI组件日益完善的同时,也开始出现了RecyclerView、ConstraintLayout、MotionLayout等一些可以辅助大家写出更加符合性能要求的界面效果。在UI控件日益满足需求的同时,系统的安全与稳定性、用户隐私也越来越被重视,所以每个版本都出现了一些大的适配工作,例如运行时权限,FileProvider适配,限制后台服务、广播,限制反射SDK私有API,引导使用HTTPS,甚至
- 基于 LLM 的智能运维 Agent 系统设计与实现
LLM教程
人工智能embeddingLLMpython大模型Agent智能体
摘要本文详细介绍了一个基于大语言模型(LLM)的智能运维Agent系统的设计与实现。该系统采用多Agent协同的架构,通过事件驱动的方式实现了自动化运维流程。系统集成了先进的AI能力,能够实现故障自动诊断、预测性维护、知识沉淀等核心功能。一、运维Agent架构设计在设计智能运维Agent系统时,我们采用了模块化和事件驱动的架构思想,将复杂的运维场景分解为多个独立的能力域,并通过消息总线实现各组件的
- 智能巡检机器人在电力行业的应用
zxsz_com_cn
智能巡检系统人工智能网络数据库
一、引言在电力行业中,保障电力设备的安全稳定运行至关重要。传统的人工巡检方式存在劳动强度大、效率低、容易出现漏检和误判等问题。随着科技的发展,智能巡检机器人应运而生,并在电力行业中得到了广泛而深入的应用,为电力系统的可靠运行提供了有力保障。二、智能巡检机器人在电力行业的应用场景(一)变电站巡检设备外观检查智能巡检机器人配备高清摄像头和图像识别技术,能够对变电站内的变压器、断路器、隔离开关、互感器等
- LLaMA3大模型技术全网最全解析——模型架构与训练方法(收录于GPT-4/ChatGPT技术与产业分析)
chenweiPhD
人工智能深度学习语言模型架构
Meta在周四(4月18日)发布了其最新大型语言模型LLaMA3。该模型将被集成到其虚拟助手MetaAI中。Meta自称8B和70B的LLaMA3是当今8B和70B参数规模的最佳模型,并在推理、代码生成和指令跟踪方面有了很大进步。(点赞是我们分享的动力)--------------------------------------------------主编作者陈巍博士,高级职称,曾担任华为系相关自
- 简化版奇异值分解(SVD)方法详解
DuHz
数理统计学知识机器学习人工智能算法信息与通信信号处理
简化版奇异值分解(SVD)方法详解奇异值分解(SVD)是一个强大的矩阵分解工具,广泛应用于数据降维、图像压缩、机器学习等领域。然而,对于大规模数据或高维矩阵,计算和存储的开销非常大,因此提出了多种简化版的SVD方法。这些简化版方法在保证解的精度的同时,能够显著减少计算量和内存占用。本文将详细介绍几种简化版SVD方法,包括经济型SVD、随机化SVD、增量SVD、分块SVD和偏最小二乘法(PLS),并
- 私有AI对话系统实战:基于Ollama+OpenWebUI的DeepSeek-R1本地化部署手把手教学(可共享访问)
Developer-YC
DeekSeek-R1大模型解读与实战教学人工智能pythonjavagithubnode.js语言模型后端
引言:为什么选择本地部署大模型?在数据隐私日益重要的今天,云端AI服务的局限性逐渐显现——敏感信息泄露风险、网络延迟依赖、定制化能力不足。而通过**Ollama(模型管理框架)和OpenWebUI(可视化交互工具)**的组合,开发者可以轻松实现大模型(如DeepSeek-R1)的本地部署,兼顾性能与安全。本文将以DeepSeek-R1为例,详解从环境配置到实战应用的全流程。一、工具与模型简介1.O
- 理论一、大模型—概念
伯牙碎琴
大模型自然语言处理ai
一、总述大模型通常指的是参数规模庞大、训练难度较高的人工智能模型。随着深度学习技术的发展,研究人员和企业越来越倾向于构建更大的模型,以提高模型的性能和泛化能力。这些大模型往往需要大量的数据和计算资源来训练,并且在实际应用中通常表现出色。大模型全称是大型语言模型(LLM,LargeLanguageModel),这个“大”主要指模型结构容量大,结构中的参数多,用于预训练大模型的数据量大。一个大模型可以
- 一、大模型微调的前沿技术与应用
伯牙碎琴
大模型微调人工智能大模型微调Deepseek
大模型微调的前沿技术与应用随着大规模预训练模型(如GPT、BERT、T5等)的广泛应用,大模型微调(Fine-Tuning,FT)成为了提升模型在特定任务中性能的关键技术。通过微调,开发者可以根据实际需求调整预训练模型的参数,使其更好地适应特定应用场景。本文将介绍大模型微调技术的前沿发展,分析不同微调方法的特点、适用场景以及优缺点,并对它们进行系统分类。微调技术的重要性大模型微调能够帮助开发者根据
- 玩转代理模式
清泓y
六大常见设计模式代理模式设计模式c++
文章目录什么是代理模式举例:代理模式结构代理模式适用场景实现方式代理模式的优缺点优点:缺点:什么是代理模式代理模式,主要用途就是代理一个某一个所需要的物件,但是我们不直接使用这个物件,我们用一个代理接口来代替我们使用这个物件。举例:信用卡是银行账户的代理,银行账户则是一大捆现金的代理。它们都实现了同样的接口,均可用于进行支付。消费者会非常满意,因为不必随身携带大量现金;商店老板同样会十分高兴,因为
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key