EasyRules是一款基于Java的开源的轻量级的规则引擎框架。它可以帮助开发人员快速开发并管理规则,实现应用程序的自动化决策。EasyRules框架非常易于使用,且可以与任何Java应用程序无缝集成。在本文中,我们将对其进行一个简单的封装,以实现复杂的规则表达式匹配。
一、EasyRules的基本概念
EasyRules是一个基于规则的引擎,它基于规则引擎的常见原则和概念。以下是一些EasyRules框架中的重要概念:
- 规则(Rule):规则是EasyRules框架中的核心概念,它用于描述应用程序中需要遵循的规则。每个规则通常包含两个部分:规则名称和规则条件。
- 规则条件(Condition):规则条件定义了规则的前提条件。如果规则条件为true,则规则将被触发执行。否则,规则将被忽略。
- 规则动作(Action):规则动作是在规则被触发时执行的一段代码。它可以用于实现各种应用程序逻辑,例如更新数据、发送消息等。
- 规则执行(Rule Engine):规则执行是EasyRules框架的核心功能之一,它负责解析规则条件,并根据条件执行相应的规则动作。
二、快速上手Demo
了解了easyRules的基本概念后,我们来写一个简单的demo:
假设我们有一个需求,根据用户的年龄来决定是否可以购买酒类产品,如果用户年龄小于18岁,则不能购买酒类产品。
首先,我们需要定义一个规则类,继承自org.jeasy.rules.annotation.Rule,如下所示:
import org.jeasy.rules.annotation.Condition;
import org.jeasy.rules.annotation.Fact;
import org.jeasy.rules.annotation.Rule;
@Rule(name = "age rule", description = "Check if user is of legal age to buy alcohol")
public class AgeRule {
@Condition
public boolean checkAge(@Fact("age") int age) {
return age >= 18;
}
}
在这个规则类中,我们定义了一个名为“checkAge”的条件方法,它接受一个名为“age”的事实参数,并返回一个布尔值表示用户是否满足购买酒类产品的年龄要求。
接下来,我们需要创建一个规则引擎实例,并将规则类添加到规则引擎中。代码如下所示:
import org.jeasy.rules.api.Facts;
import org.jeasy.rules.api.Rules;
import org.jeasy.rules.core.RulesImpl;
import org.jeasy.rules.core.DefaultRulesEngine;
public class RuleEngineDemo {
public static void main(String[] args) {
AgeRule ageRule = new AgeRule();
Rules rules = new RulesImpl();
rules.register(ageRule);
DefaultRulesEngine rulesEngine = new DefaultRulesEngine();
Facts facts = new Facts();
facts.put("age", 20);
rulesEngine.fire(rules, facts);
}
}
在这个示例代码中,我们创建了一个名为“ageRule”的规则对象,并将其注册到名为“rules”的规则集合中。接着,我们创建了一个默认的规则引擎实例,并创建了一个名为“facts”的事实对象,并将“age”和“20”作为键值对添加到事实对象中。最后,我们通过调用规则引擎的fire方法来启动规则引擎并触发规则执行。
三、easyRules工具类
以上示例展示了如何快速的使用easyRule实现规则创建及调用的流程。但是如果我们有更复杂的场景,比如在数据质量规则校验中,我们有如下的规则判断:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XJC0OufR-1685683113114)(/Users/casey/Library/Application Support/typora-user-images/image-20230329152414895.png)]
对于这种比较复杂且校验规则经常会发生变化的规则,通过上述代码就无法实现了,为此,我将对easyRule做进一步的封装,以达到此目的。
1. 定义常量类
首先定义一个常量类
package com.shsc.bigdata.indicator.monitor.common.constant;
public class EasyRulesConstants {
// 事实别名
public static final String FACT_ALIAS = "fact";
// 结果别名
public static final String RESULT_ALIAS = "result";
// and关系
public static final String RELATION_AND = "and";
// or关系
public static final String RELATION_OR = "or";
// 匹配成功信息
public static final String MATCH_SUCCESS_MESSAGE = "匹配成功";
public static final String FIELD_TYPE = "type";
public static final String FIELD_OPERATOR = "operator";
public static final String FIELD_NAME = "metricName";
public static final String FIELD_VALUE = "value";
public static final String FIELD_CHILDREN = "children";
public static final String EXPRESSION_TYPE = "EXPRESSION";
public static final String RELATION_TYPE = "RELATION";
public static final String LEFT_BRACKETS = "(";
public static final String RIGHT_BRACKETS = ")";
public static final String SYMBOL_SPACE = " ";
public static final String SYMBOL_EMPTY = "";
public static final String LOGICAL_AND = "&&";
public static final String LOGICAL_OR = "||";
}
2. 定义枚举类
定义一个枚举类,罗列出常用的运算符
package com.shsc.bigdata.indicator.monitor.common.enums;
public enum EasyRulesOperation {
GREATER_THAN("GREATER_THAN", "%s > %s", "大于"),
GREATER_THAN_EQUAL("GREATER_THAN_EQUAL", "%s >= %s", "大于等于"),
LESS_THAN("LESS_THAN", "%s < %s", "小于"),
LESS_THAN_EQUAL("LESS_THAN_EQUAL", "%s <= %s", "小于等于"),
EQUAL("EQUAL", "%s == %s", "等于"),
UNEQUAL("UNEQUAL", "%s != %s", "不等于"),
BETWEEN("BETWEEN", "%s >= %s && %s <= %s", "介于之间"),
OUT_OF_RANGE("OUT_OF_RANGE", "%s >= %s || %s >= %s", "超出范围"),
CONTAINS("CONTAINS", "%s.contains(\"%s\")", "包含"),
STARTSWITH("STARTSWITH", "%s.startsWith(\"%s\")", "前缀"),
ENDSWITH("ENDSWITH", "%s.endsWith(\"%s\")", "后缀"),
;
public static EasyRulesOperation getOperationByOperator(String operator) {
EasyRulesOperation[] list = EasyRulesOperation.values();
for (EasyRulesOperation item : list) {
String compareOperator = item.getOperator();
if (compareOperator.equals(operator)) {
return item;
}
}
return null;
}
private final String operator;
private final String expression;
private final String remark;
EasyRulesOperation(String operator, String expression, String remark) {
this.operator = operator;
this.expression = expression;
this.remark = remark;
}
public String getOperator() {
return operator;
}
public String getExpression() {
return expression;
}
public String getRemark() {
return remark;
}
}
3. 工具类
package com.shsc.bigdata.indicator.monitor.common.utils.easyRules;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONArray;
import com.alibaba.fastjson.JSONObject;
import com.shsc.bigdata.indicator.monitor.common.enums.EasyRulesOperation;
import lombok.Data;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang3.ObjectUtils;
import org.apache.commons.lang3.StringUtils;
import org.jeasy.rules.api.Facts;
import org.jeasy.rules.api.Rules;
import org.jeasy.rules.api.RulesEngine;
import org.jeasy.rules.core.DefaultRulesEngine;
import org.jeasy.rules.mvel.MVELRule;
import static com.shsc.bigdata.indicator.monitor.common.constant.EasyRulesConstants.*;
@Slf4j
public class EasyRulesUtil {
/**
* 执行规则匹配
* @param fact 事实json
* @param ruleModel 规则模型
*/
public static RuleResult match(JSONObject fact, RuleModel ruleModel){
// 结果
RuleResult result = new RuleResult();
result.setRuleId(ruleModel.getRuleId());
// 规则实例
Facts facts = new Facts();
facts.put(FACT_ALIAS, fact);
facts.put(RESULT_ALIAS, result);
// 规则内容
org.jeasy.rules.api.Rule mvelrule = new MVELRule()
.name(ruleModel.getRuleName())
.description(ruleModel.getDescription())
.when(ruleModel.getWhenExpression())
.then(ruleModel.getThenExpression());
// 规则集合
Rules rules = new Rules();
// 将规则添加到集合
rules.register(mvelrule);
// 创建规则执行引擎,并执行规则
RulesEngine rulesEngine = new DefaultRulesEngine();
rulesEngine.fire(rules, facts);
return result;
}
/**
* 构建mvel条件表达式
* @param json 节点json,例如:
* {
* "type": "EXPRESSION",
* "operator": "LESS_THAN",
* "metricName": "NORMAL_NUMBER",
* "value": "11",
* "children": []
* }
*/
public static String buildWhenExpression(JSONObject json) {
StringBuilder mvelExpression = new StringBuilder();
String type = json.getString(FIELD_TYPE);
String operator = json.getString(FIELD_OPERATOR);
switch (type) {
case EXPRESSION_TYPE:
String fieldName = json.getString(FIELD_NAME);
String fieldValue = json.getString(FIELD_VALUE);
mvelExpression.append(buildOperatorExpress(operator, fieldName, fieldValue));
break;
case RELATION_TYPE:
JSONArray children = json.getJSONArray(FIELD_CHILDREN);
if (children.size() == 0) {
return SYMBOL_EMPTY;
}
operator = convertRelationExpress(operator);
StringBuilder childrenExpression = new StringBuilder();
for (int i = 0; i < children.size(); i++) {
JSONObject child = children.getJSONObject(i);
// 递归构建单个规则条件
String childExpression = buildWhenExpression(child);
if (!childExpression.isEmpty()) {
if (childrenExpression.length() > 0) {
childrenExpression.append(SYMBOL_SPACE).append(operator).append(SYMBOL_SPACE);
}
childrenExpression.append(LEFT_BRACKETS).append(childExpression).append(RIGHT_BRACKETS);
}
}
mvelExpression.append(childrenExpression);
break;
default:
break;
}
return mvelExpression.toString();
}
/**
* 构建mvel结果表达式
*/
public static String buildThenExpression() {
StringBuilder expression = new StringBuilder();
expression.append(RESULT_ALIAS).append(".setValue(\"").append(MATCH_SUCCESS_MESSAGE).append("\");");
log.info("thenExpression: {}", expression);
return expression.toString();
}
/**
* 转换条件连接符
* @param relation 条件连接符
*/
private static String convertRelationExpress(String relation) {
if (StringUtils.isEmpty(relation)){
return SYMBOL_EMPTY;
} else if(relation.equalsIgnoreCase(RELATION_AND)){
return LOGICAL_AND;
} else if(relation.equalsIgnoreCase(RELATION_OR)){
return LOGICAL_OR;
}
return relation;
}
/**
* 构建mvel表达式
* @param operator 操作符
* @param fieldName 字段名称
* @param value 字段值
*/
private static String buildOperatorExpress(String operator, String fieldName, Object value) {
EasyRulesOperation operation = EasyRulesOperation.getOperationByOperator(operator);
if (ObjectUtils.isNotEmpty(operation)) {
String expression = operation.getExpression();
return String.format(expression, buildValueExpress(fieldName), value);
}
return SYMBOL_EMPTY;
}
/**
* 构建mvel取值表达式
* @param fieldName 字段名称
*/
private static String buildValueExpress(String fieldName) {
return String.format("%s.get(\"%s\")", FACT_ALIAS, fieldName);
}
@Data
public static class RuleModel {
private String ruleId;
String ruleName;
String description;
String whenExpression;
String thenExpression;
}
@Data
public static class RuleResult {
// 规则主键
private String ruleId;
// 是否匹配, 默认false
boolean isMatch = false;
// 匹配信息,默认为匹配失败
String message = "匹配失败";
/**
* 匹配成功后设置成功信息
*/
public void setValue(String message){
this.message = message;
this.isMatch = true;
}
}
}
4. 测试
package com.shsc.bigdata.indicator.monitor.common;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import com.shsc.bigdata.indicator.monitor.common.utils.easyRules.EasyRulesUtil;
import lombok.extern.slf4j.Slf4j;
@Slf4j
public class TestEasyRules {
public static void main(String[] args) {
// 1. 新增规则
EasyRulesUtil.RuleModel ruleModel = new EasyRulesUtil.RuleModel();
ruleModel.setRuleId("1");
ruleModel.setRuleName("rule1");
ruleModel.setDescription("测试规则");
// 2. 设置规则条件
String ruleJson = "{\n" +
" \"validateCondition\": {\n" +
" \"type\": \"RELATION\",\n" +
" \"operator\": \"OR\",\n" +
" \"children\": [\n" +
" {\n" +
" \"type\": \"EXPRESSION\",\n" +
" \"operator\": \"LESS_THAN\",\n" +
" \"metricName\": \"NORMAL_NUMBER\",\n" +
" \"value\": \"11\",\n" +
" \"children\": []\n" +
" },\n" +
" {\n" +
" \"type\": \"EXPRESSION\",\n" +
" \"operator\": \"LESS_THAN_EQUAL\",\n" +
" \"metricName\": \"ERROR_NUMBER\",\n" +
" \"value\": \"11\",\n" +
" \"children\": []\n" +
" },\n" +
" {\n" +
" \"type\": \"RELATION\",\n" +
" \"children\": [\n" +
" {\n" +
" \"type\": \"EXPRESSION\",\n" +
" \"metricName\": \"NORMAL_NUMBER\",\n" +
" \"operator\": \"GREATER_THAN\",\n" +
" \"value\": 10,\n" +
" \"children\": []\n" +
" },\n" +
" {\n" +
" \"type\": \"EXPRESSION\",\n" +
" \"metricName\": \"ERROR_NUMBER\",\n" +
" \"operator\": \"GREATER_THAN\",\n" +
" \"value\": 100,\n" +
" \"children\": []\n" +
" },\n" +
" {\n" +
" \"type\": \"RELATION\",\n" +
" \"children\": [\n" +
" {\n" +
" \"type\": \"EXPRESSION\",\n" +
" \"metricName\": \"NORMAL_NUMBER\",\n" +
" \"operator\": \"EQUAL\",\n" +
" \"value\": 1,\n" +
" \"children\": []\n" +
" },\n" +
" {\n" +
" \"type\": \"EXPRESSION\",\n" +
" \"metricName\": \"ERROR_NUMBER\",\n" +
" \"operator\": \"EQUAL\",\n" +
" \"value\": 1,\n" +
" \"children \": []\n" +
" }\n" +
" ],\n" +
" \"operator\": \"OR\"\n" +
" }\n" +
" ],\n" +
" \"operator\": \"OR\"\n" +
" }\n" +
" ]\n" +
" }\n" +
"}";
JSONObject conditionJson = JSON.parseObject(ruleJson);
// 3. 设置fact
String whenExpression = EasyRulesUtil.buildWhenExpression(conditionJson.getJSONObject("validateCondition"));
log.info("whenExpression:{}", whenExpression);
ruleModel.setWhenExpression(whenExpression);
// 4. 设置结果表达式
ruleModel.setThenExpression(EasyRulesUtil.buildThenExpression());
// 5. 设置匹配条件
JSONObject json = new JSONObject();
json.put("NORMAL_NUMBER", "10");
json.put("ERROR_NUMBER", 10);
json.put("省=陕西;市=西安;", 100);
// 6. 调用规则匹配
EasyRulesUtil.RuleResult result = EasyRulesUtil.match(json, ruleModel);
System.out.println(result);
}
}
上面的例子中,我使用了MVEL表达式语言实现了动态规则,关于MVEL的知识请翻阅历史文章查看。然后传入了一个比较复杂的多层级的规则表达式,测试结果如下:
15:30:29.915 [main] INFO com.shsc.bigdata.indicator.monitor.common.EasyRules - whenExpression:(fact.get("NORMAL_NUMBER") < 11) || (fact.get("ERROR_NUMBER") <= 11) || ((fact.get("NORMAL_NUMBER") > 10) || (fact.get("ERROR_NUMBER") > 100) || ((fact.get("NORMAL_NUMBER") == 1) || (fact.get("ERROR_NUMBER") == 1)))
15:30:29.919 [main] INFO com.shsc.bigdata.indicator.monitor.common.utils.easyRules.EasyRulesUtil - thenExpression: result.setValue("匹配成功");
15:30:30.085 [main] DEBUG org.jeasy.rules.core.DefaultRulesEngine - Engine parameters { skipOnFirstAppliedRule = false, skipOnFirstNonTriggeredRule = false, skipOnFirstFailedRule = false, priorityThreshold = 2147483647 }
15:30:30.085 [main] DEBUG org.jeasy.rules.core.DefaultRulesEngine - Registered rules:
15:30:30.086 [main] DEBUG org.jeasy.rules.core.DefaultRulesEngine - Rule { name = 'rule1', description = '测试规则', priority = '2147483646'}
15:30:30.086 [main] DEBUG org.jeasy.rules.core.DefaultRulesEngine - Known facts:
15:30:30.086 [main] DEBUG org.jeasy.rules.core.DefaultRulesEngine - Fact{name='result', value=EasyRulesUtil.RuleResult(ruleId=1, isMatch=false, message=匹配失败)}
15:30:30.086 [main] DEBUG org.jeasy.rules.core.DefaultRulesEngine - Fact{name='fact', value={"ERROR_NUMBER":10,"NORMAL_NUMBER":"10","省=陕西;市=西安;":100}}
15:30:30.096 [main] DEBUG org.jeasy.rules.core.DefaultRulesEngine - Rules evaluation started
15:30:30.178 [main] DEBUG org.jeasy.rules.core.DefaultRulesEngine - Rule 'rule1' triggered
15:30:30.187 [main] DEBUG org.jeasy.rules.core.DefaultRulesEngine - Rule 'rule1' performed successfully
EasyRulesUtil.RuleResult(ruleId=1, isMatch=true, message=匹配成功)
从上述日志可以看到,isMatch=true表示匹配成功:
EasyRulesUtil.RuleResult(ruleId=1, isMatch=true, message=匹配成功)
四、写在最后
通过以上对easyRules的封装,我们可以实现复杂的规则表达式校验,只需要定义好表达式的json结构以及匹配的条件即可。
PS:以上文章出自微信公众号“毛毛小妖的笔记”。
查看更多原创内容请在微信公众号搜索“毛毛小妖的笔记”即可关注。