- 【Python TensorFlow】入门到精通
极客代码
玩转Pythonpythontensorflow开发语言人工智能深度学习
TensorFlow是一个开源的机器学习框架,由Google开发,广泛应用于机器学习和深度学习领域。本篇将详细介绍TensorFlow的基础知识,并通过一系列示例来帮助读者从入门到精通TensorFlow的使用。1.TensorFlow简介1.1什么是TensorFlow?TensorFlow是一个开源的软件库,主要用于数值计算,特别是在机器学习和深度学习领域。它提供了一个灵活的架构来定义复杂的数
- 【学习心得】Python好库推荐——PEFT
小oo呆
【学习心得】人工智能python语言模型
一、PEFT是什么?PEFT(Parameter-EfficientFine-Tuning)是一种在深度学习中进行参数高效微调的技术。这种技术主要应用于大型预训练模型的微调过程中,目的是在保持模型性能的同时减少所需的计算资源和时间。通过PEFT,可以有效地调整模型以适应特定任务或数据集,而无需对整个模型的所有参数进行全面微调。二、PEFT使用场景在计算资源有限的情况下,如边缘设备、移动设备或低成本
- 深度学习训练模型损失Loss为NaN或者无穷大(INF)原因及解决办法
余弦的倒数
学习笔记机器学习深度学习pytorch深度学习人工智能机器学习
文章目录一、可能原因==1.学习率过高====2.batchsize过大==3.梯度爆炸4.损失函数不稳定5.数据预处理问题6.数据标签与输入不匹配7.模型初始化问题8.优化器设置问题9.数值问题==10.模型结构设计缺陷==二、调试步骤三、常见预防措施一、可能原因1.学习率过高原因:学习率过高可能导致梯度爆炸,权重更新幅度过大,导致模型参数变为无穷大或NaN。学习率设置过大是常见问题,它会让参数
- 云原生网络架构
key_3_feng
云原生网络云原生架构
着云原生技术的不断发展和演进,实现容器间互联的云原生网络架构也在不断地进行优化和完善,从Docker本身的动态端口映射网络模型到CNCF的CNI容器网络接口,再到“ServiceMesh+CNI”层次化的SDN。容器网络以容器的典型实现Docker为例,其自身在网络架构上默认采用桥接模式,即Linux网桥模式,创建的每一个Docker容器都会桥接到这个docker0的网桥上,形成一个二层互联的网络
- 开发者交流平台项目部署到阿里云服务器教程
独自破碎E
阿里云服务器云计算java后端开发语言
本文使用PuTTY软件在本地Windows系统远程控制Linux服务器;其中,Windows系统为Windows10专业版,Linux系统为CentOS7.664位。1.工具软件的准备maven:https://archive.apache.org/dist/maven/maven-3/3.6.1/binaries/apache-maven-3.6.1-bin.tar.gztomcat:https
- 通过命令行工作流提升工作效率的实战教程(持续更新)
herosunly
大模型工作流实战教程
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了通过命令行工作流提升工作效率的实战教程,希望对使用大语言模型的同学们有所
- LNMP(linux+nginx+mysql+php)服务器环境配置[转]
dianyun0789
运维php操作系统
一、简介Nginx是俄罗斯人编写的十分轻量级的HTTP服务器,Nginx,它的发音为“engineX”,是一个高性能的HTTP和反向代理服务器,同时也是一个IMAP/POP3/SMTP代理服务器.Nginx是由俄罗斯人IgorSysoev为俄罗斯访问量第二的Rambler.ru站点开发的,它已经在该站点运行超过三年了。IgorSysoev在建立的项目时,使用基于BSD许可。在高并发连接的情况下,N
- 第03课:Anaconda 与 Jupyter Notebook
红色石头Will
深度学习PyTorch极简入门人工智能深度学习PyTorch
本文将为大家介绍深度学习实战非常重要的两个工具:Anaconda和JupyterNotebook。Anaconda为什么选择Anaconda我们知道Python是人工智能的首选语言。为了更好、更方便地使用Python来编写深度学习相关程序,可以使用集成开发环境或集成管理系统,最流行的比如PyCharm和Anaconda。本文我推荐使用Anaconda。之所以选择Anaconda,是因为Anacon
- 深度学习(DL/ML)学习路径
jackl的科研日常
深度学习学习人工智能
最近几年,尤其是自从2016年AlphaGo打败李世石事件后,人工智能技术受到了各行业极大关注。其中以机器学习技术中深度学习最受瞩目。主要原因是这些技术在科研领域和工业界的应用效果非常好,大幅提升了算法效率、降低了成本。因而市场对相关技术有了如此大的需求。我在思考传统行业与这些新兴技术结合并转型的过程中,亦系统的回顾了深度学习及其相关技术。本文正是我在学习过程中所作的总结。我将按照我所理解的学习路
- 基于深度学习的行人检测与识别系统:YOLOv5、YOLOv8、YOLOv10与UI界面的实现
2025年数学建模美赛
深度学习YOLOui人工智能分类
引言行人检测与识别技术作为计算机视觉领域的一个重要应用,广泛应用于智能监控、自动驾驶、公共安全等多个领域。行人检测系统的目标是通过图像或视频中的内容,自动识别并定位行人,这项任务在复杂环境中面临着不同的挑战,如多样的行人姿态、遮挡、光照变化等。近年来,深度学习的进步,尤其是目标检测领域的快速发展,为行人检测提供了强有力的支持。YOLO(YouOnlyLookOnce)系列模型,作为目前目标检测领域
- 基于深度学习的行人检测识别系统:YOLOv8 + UI界面 + 数据集完整实现
2025年数学建模美赛
深度学习YOLOui人工智能分类
1.引言行人检测与识别是计算机视觉中的一个重要领域,广泛应用于安防监控、智能交通、自动驾驶等多个领域。传统的行人检测方法面临着许多挑战,如低光照、复杂背景、遮挡等问题。随着深度学习技术的迅猛发展,基于卷积神经网络(CNN)的方法,尤其是YOLO(YouOnlyLookOnce)系列算法,在行人检测中取得了显著的效果。YOLOv8作为YOLO系列的最新版本,继承了YOLO一贯的高效性和准确性,在速度
- 本地Apache Hive的Linux服务器集群复制数据到SQL Server数据库的分步流程
weixin_30777913
数据库数据仓库hivesqlserver
我们已经有安装ApacheHive的Linux服务器集群,它可以连接到一个SQLServerRDS数据库,需要在该Linux服务器上安装配置sqoop,然后将Hive中所有的表数据复制到SQLServerRDS数据库。以下是分步指南,用于在Linux服务器上安装配置Sqoop并将Hive表数据迁移至SQLServerRDS:1.安装Sqoop步骤:下载Sqoop前往ApacheSqoop下载页面,
- 【Python百日基础系列】Day25 - 真机安装Ubuntu20.04服务器版 + Mysql8
岳涛@泰山医院
Dashpythonubuntu
文章目录一、Ubuntu服务器版下载二、制作启动U盘,RAW写入三、笔记本真机安装Ubuntu20.04服务器版3.1设置笔记本U盘启动,插入启动U盘3.2检查安装文件完整性,需要一两分钟3.3选择语言3.4确认语言和布局3.5确认网络连接3.6输入代理地址,默认空着就行3.7确认服务器地址,默认就行3.8设置磁盘,默认就行3.9再次确认磁盘分区,默认就行3.10输入用户名、电脑名和密码3.11安
- Erpnext安装
人间不值得T皿T
开源项目pythonerp开源项目javascript
Erpnext安装环境要求Ubuntu23.04x86_64Python3.10.12pip23.0.1nodev18.16.0npm9.5.1yarn1.22.22MariaDB10.11.2Redis7.0.8wkhtmltox0.12.6.1bench5.22.6环境安装Reids安装//安装7.0.8也可不指定版本直接执行sudoaptinstallredis-serversudoapti
- 解决Ubuntu无法连网问题
0817
ubuntu服务器运维
重启虚拟机网络服务器ctrl+alt+t打开虚拟机命令终端,依次输入以下指令,重启虚拟机网络服务器sudoserviceNetworkManagerstopsudorm/var/lib/NetworkManager/NetworkManager.statesudoserviceNetworkManagerrestartsudoservicenetwork-managerstopsudorm/var
- ubuntu18.04无法上网的解决办法
张歆伊�️
ubuntulinux运维
解决办法:使用nmclisudonmclinetworkingoffsudonmclinetworkingon然后重启网络sudoservicenetwork-managerrestart参考:Ubuntu连接不上网络问题的解决方法_菜鸡什么时候能变强的博客-CSDN博客_ubuntu连不上网
- (3-5)文生图模型架构:扩散模型
码农三叔
训练RAG多模态)人工智能python深度学习大模型文生图多模态
3.5扩散模型扩散模型(DiffusionModels)是一类用于生成图像的深度学习模型,近年来在图像生成任务中取得了显著的进展。扩散模型的基本思想是通过逐步添加噪声到数据中,然后学习从噪声中恢复原始数据的过程。3.5.1扩散模型的基本概念扩散模型是一种基于随机过程的生成模型,通过逐步添加和去除噪声,实现从随机噪声到高质量数据的转化,其独特的训练和生成机制使其在图像生成领域表现出色。1.扩散过程扩
- Ubuntu系统:安装Anaconda后在桌面或收藏夹创建导航器(anaconda-navigator)图标(快捷方式)
Reckoningbill
UbuntuLinuxanacondadesktop桌面图标
和其他应用一样,只需要写一个.desktop文件即可经过尝试,给大家一个样例,自己电脑上需要改其中一部分文件目录即可。打开终端,可以用快捷键Ctrl+alt+T。进入/usr/share/applications文件夹。cd/usr/share/applicationstouch新建一个anaconda-navigator.desktop文件,然后用vim或者gedit编辑。sudotouchan
- 安装Anaconda之后,Anaconda Navigator打不开
阿尔法星球
pythonpython
如果安装Anaconda之后无法打开AnacondaNavigator,可以尝试以下步骤来解决问题:重新启动计算机:有时候,简单的重新启动计算机可以解决安装后的一些问题。检查Anaconda安装:打开命令行窗口(Windows的CMD或PowerShell,macOS和Linux的终端),输入以下命令来检查Anaconda的安装情况:conda--version如果Anaconda安装正确,这将显
- linux的/proc 和 /sys目录差异
最后一个bug
linux内核设计与实现linuxc语言arm开发嵌入式硬件单片机
/proc和/sys都是Linux系统中用于提供系统信息和进行系统配置的虚拟文件系统,但它们的原理并不完全一样,以下是具体分析:目的与功能/proc:主要用于提供系统进程相关信息以及内核运行时的一些参数等,可让用户和程序了解系统中正在运行的进程状态、资源使用情况等,如进程的PID、内存占用、打开的文件等,也能通过它调整一些内核参数。/sys:主要用于提供系统硬件设备的信息和属性,以及内核中一些与设
- 安装openssl报错:openssl: symbol lookup error: openssl: undefined symbol: EVP_mdc2, version OPENSSL_1_1_0
dg1011
linux
首先,安装网上教程对openssl进行了安装sudowgethttps://www.openssl.org/source/openssl-1.1.1t.tar.gz如果Linux系统没网,可现在windows上下载压缩文件,再传到Linux系统直接在浏览器输入https://www.openssl.org/source/openssl-1.1.1t.tar.gz就可以下载下来然后进行安装#将安装包
- Linux上快速压缩与解压缩(zip, tag.gz)
Dinsanity
linux笔记本linux运维服务器
在集群上,我们通常会与很大的model或者data压缩文件打交道。此文整理了在linux集群上实现快速解压缩的技法。1.tar文件Pigz(pigzee)是一个用于压缩和解压缩.gz文件的并行实现工具,它能够利用多核处理器来加速基于gzip的压缩和解压过程。参考:快如闪电:Linux多线程压缩软件pigz1.1.Pigz安装sudoapt-getupdatesudoapt-getinstallpi
- ESP32-C3 VScode开发环境搭建(基于ESP-IDF—Windows和Ubuntu双环境)_esp32只能基于windows平台开发吗
2401_87555613
vscodewindowsubuntu
2.3.1VScode插件配置2.3.2工程编译测试2.3.2烧录一、Windows环境下安装1.1安装Git直接搜索Git,到官方网站下载,地址:Git官方下载地址下载完毕,双击安装:除了开始选择一下安装路径,后面大部分默认就可以:安装完成,点击Finish即可:安装完成以后记得添加一下环境变量(现在软件很多都可以自动添加环境变量,在安装的时候选择一下AddtoPATH,如果没有自动添加环境变量
- 毕业设计项目 深度学习人体目标检测
bee_dc
毕业设计毕设大数据
1简介今天学长向大家介绍一个机器视觉的毕设项目,基于深度学习的人体目标检测算法研究与实现项目运行效果:毕业设计深度学习行人目标检测系统项目分享:见文末!2目标检测概念普通的深度学习监督算法主要是用来做分类,如图1所示,分类的目标是要识别出图中所示是一只猫。在ILSVRC(ImageNetLargeScaleVisualRecognitionChallenge)竞赛以及实际的应用中,还包括目标定位和
- TCP抓包和数据包分析
粤M温同学
网络网络协议
tcpdump是Linux系统下的一款抓包命令集,工作原理是基于网卡抓取流动在网卡上的数据包。在Linux系统中由于tcpdump命令的简单和强大,我们一般直接使用tcpdump命令来抓取数据包。保存之后,拖下来在wireshark中分析一、TCP数据包抓取tcpdump常用参数:-c:表示要抓取的包数量,比如-c100表示我要抓取100个满足条件的包。-i:表示指定对哪个网卡接口进行抓包,比如-
- python正则表达式操作指南_Python正则表达式操作指南
weixin_39566864
python正则表达式操作指南
Python正则表达式操作指南出自Ubuntu中文原文作者:A.M.Kuchling(
[email protected])翻译人员:FireHare校对人员:Leal适用版本:Python1.5及后续版本摘要本文是通过Python的re模块来使用正则表达式的一个入门教程,和库参考手册的对应章节相比,更为浅显易懂、循序渐进。目录[编辑]简介Python自1.5版本起增加了re模块,它提供Perl风格的正则表达式模
- 【TVM教程】为 Mobile GPU 自动调优卷积网络
HyperAI超神经
TVM人工智能机器学习TVM编程编译器GPUCPU
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:LianminZheng,EddieYan针对特定设备的自动调优对于获得最佳性能至关重要。本文介绍如何调优整个卷积网络。TVM中MobileGPU的算子实现是以template形式编写的。该template有许多可调参数(tile因子
- 深度学习篇---数据存储类型
Ronin-Lotus
深度学习篇深度学习人工智能学习笔记CPython数据类型
文章目录前言第一部分:C语言中的数据存储类型1.char(通常是8位)优点缺点2.short(通常是16位)优点缺点3.int(通常是32位)优点缺点4.long(通常是32位或64位)优点缺点5.longlong(通常是64位)优点缺点6.float(通常是32位)优点缺点7.double(通常是64位)优点缺点第二部分:Python中的数据存储类型1.int(整数类型)优点缺点2.float(
- 使用Ollama部署deepseek大模型
使用Ollama部署deepseek大模型前置条件使用英伟达显卡下载cuda驱动https://developer.nvidia.com/cuda-downloadsOllamaOllama官方版:https://ollama.com/我的显卡在Windows电脑上面所以使用Windows的安装方式去安装若你的显卡是在Linux上面可以使用如下命令安装curl-fsSLhttps://ollama
- Linux内核中的页面错误处理机制与按需分页技术
109702008
#linux系统编程#linux内核linux人工智能c语言
在现代操作系统中,内存管理是核心功能之一,而页面错误(PageFault)处理机制是内存管理的重要组成部分。当程序访问一个尚未映射到物理内存的虚拟地址时,CPU会触发页面错误异常,内核需要捕获并处理这种异常,以决定如何响应,例如加载缺失的页面、处理权限错误等。Linux内核通过一系列复杂的函数和机制来处理这些页面错误,确保系统的稳定性和安全性。本文将详细分析Linux内核中处理页面错误的核心机制,
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。