Flink从入门到实践(一):Flink入门、Flink部署
Flink从入门到实践(二):Flink DataStream API
Flink从入门到实践(三):数据实时采集 - Flink MySQL CDC
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-clientsartifactId>
<version>1.18.0version>
dependency>
注意!自Flink 1.18以来,所有Flink DataSet api都已弃用,并将在未来的Flink主版本中删除。您仍然可以在DataSet中构建应用程序,但是您应该转向DataStream和/或Table API。
定义data内容:
pk,pk,pk
ruoze,ruoze
hello
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;
/**
* 使用Flink进行批处理,并统计wc
*
*
* 结果:
* (bye,2)
* (hello,3)
* (hi,1)
*/
public class BatchWordCountApp {
public static void main(String[] args) throws Exception {
// step0: Spark中有上下文,Flink中也有上下文,MR中也有
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
// step1: 读取文件内容 ==> 一行一行的字符串而已
DataSource<String> source = env.readTextFile("data/wc.data");
// step2: 每一行的内容按照指定的分隔符进行拆分 1:N
source.flatMap(new FlatMapFunction<String, String>() {
/**
*
* @param value 读取到的每一行数据
* @param out 输出的集合
*/
@Override
public void flatMap(String value, Collector<String> out) throws Exception {
// 使用,进行分割
String[] splits = value.split(",");
for(String split : splits) {
out.collect(split.toLowerCase().trim());
}
}
})
.map(new MapFunction<String, Tuple2<String,Integer>>() {
/**
*
* @param value 每一个元素 (hello, 1)(hello, 1)(hello, 1)
*/
@Override
public Tuple2<String, Integer> map(String value) throws Exception {
return Tuple2.of(value, 1);
}
})
.groupBy(0) // step4: 按照单词进行分组 groupBy是离线的api,传下标
.sum(1) // ==> 求词频 sum,传下标
.print(); // 打印
}
}
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;
/**
* lambda表达式优化
*/
public class BatchWordCountAppV2 {
public static void main(String[] args) throws Exception {
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSource<String> source = env.readTextFile("data/wc.data");
/**
* lambda语法: (参数1,参数2,参数3...) -> {函数体}
*/
// source.map(String::toUpperCase).print();
// 使用了Java泛型,由于泛型擦除的原因,需要显示的声明类型信息
source.flatMap((String value, Collector<Tuple2<String,Integer>> out) -> {
String[] splits = value.split(",");
for(String split : splits) {
out.collect(Tuple2.of(split.trim(), 1));
}
}).returns(Types.TUPLE(Types.STRING, Types.INT))
.groupBy(0).sum(1).print();
}
}
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;
/**
* 流式处理
* 结果:
* 8> (hi,1)
* 6> (hello,1)
* 5> (bye,1)
* 6> (hello,2)
* 6> (hello,3)
* 5> (bye,2)
*/
public class StreamWCApp {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStreamSource<String> source = env.readTextFile("data/wc.data");
source.flatMap((String value, Collector<Tuple2<String,Integer>> out) -> {
String[] splits = value.split(",");
for(String split : splits) {
out.collect(Tuple2.of(split.trim(), 1));
}
}).returns(Types.TUPLE(Types.STRING, Types.INT))
.keyBy(x -> x.f0) // 这种写法一定要掌握!流式的并没有groupBy,而是keyBy!根据第一个值进行sum
.sum(1).print();
// 需要手动开启
env.execute("作业名字");
}
}
离线:结果是一次性出来的。
实时:来一个数据处理一次,数据是带状态的。
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;
/**
* 采用批流一体的方式进行处理
*/
public class FlinkWordCountApp {
public static void main(String[] args) throws Exception {
// 统一使用StreamExecutionEnvironment这个执行上下文环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC); // 选择处理方式 批/流/自动
DataStreamSource<String> source = env.readTextFile("data/wc.data");
source.flatMap((String value, Collector<Tuple2<String,Integer>> out) -> {
String[] splits = value.split(",");
for(String split : splits) {
out.collect(Tuple2.of(split.trim(), 1));
}
}).returns(Types.TUPLE(Types.STRING, Types.INT))
.keyBy(x -> x.f0) // 这种写法一定要掌握
.sum(1).print();
// 执行
env.execute("作业名字");
}
}
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;
/**
* 使用Flink对接Socket的数据并进行词频统计
*
* 大数据处理的三段论: 输入 处理 输出
*
*/
public class FlinkSocket {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
/**
* 数据源:可以通过多种不同的数据源接入数据:socket kafka text
*
* 官网上描述的是 env.addSource(...)
*
* socket的方式对应的并行度是1,因为它来自于SourceFunction的实现
*/
DataStreamSource<String> source = env.socketTextStream("localhost", 9527);
System.out.println(source.getParallelism());
// 处理
source.flatMap((String value, Collector<Tuple2<String,Integer>> out) -> {
String[] splits = value.split(",");
for(String split : splits) {
out.collect(Tuple2.of(split.trim(), 1));
}
}).returns(Types.TUPLE(Types.STRING, Types.INT))
.keyBy(x -> x.f0) // 这种写法一定要掌握
.sum(1)
// 数据输出
.print(); // 输出到外部系统中去
env.execute("作业名字");
}
}
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/concepts/flink-architecture/
Flink是一个分布式的带有状态管理的计算框架,可以运行在常用/常见的集群资源管理器上(YARN、K8S)。
一个JobManager(协调/分配),一个或多个TaskManager(工作)。
按照官网下载执行即可:
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/try-flink/local_installation/
可以根据官网来安装,需要下载、解压、安装。
也可以使用docker安装。
启动之后,localhost:8081就可以访问管控台了。
<dependency>
<groupId>org.apache.flinkgroupId>
<artifactId>flink-runtime-webartifactId>
<version>1.18.0version>
dependency>
Configuration configuration = new Configuration();
configuration.setInteger("rest.port", 8082); // 指定web端口,开启webUI,不写的话默认8081
StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(configuration);
// 新版本可以直接使用getExecutionEnvironment(conf)
以上亲测并不好使……具体原因未知,设置为flink1.16版本或许就好用了。
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 通过参数传递进来Flink引用程序所需要的参数,flink自带的工具类
ParameterTool tool = ParameterTool.fromArgs(args);
String host = tool.get("host");
int port = tool.getInt("port");
DataStreamSource<String> source = env.socketTextStream(host, port);
System.out.println(source.getParallelism());
可以通过命令行参数:–host localhost --port 8765
# 查看作业列表
flink list -a # 所有
flink list -r # 正在运行的
# 停止作业
flink cancel <jobid>
# 提交job
# -c,--class 指定main方法
# -C,--classpath 指定classpath
# -p,--parallelism 指定并行度
flink run -c com.demo.FlinkDemo FlinkTest.jar
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/concepts/flink-architecture/#flink-application-execution
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/deployment/overview/
单机部署Session Mode和Application Mode:
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/deployment/resource-providers/standalone/overview/
k8s:
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/deployment/resource-providers/native_kubernetes/
YARN:
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/deployment/resource-providers/yarn/
https://flink.apache.org/
https://nightlies.apache.org/flink/flink-docs-stable/