SparkStreaming坑

SparkStreaming坑

Kafka+CheckPoint的坑

在storm里面是通过ack和Trident,在sparkstreaming里面,如果是1.3版本之前是通过Receiver方式读取kafka数据,1.3之后通过Direct Approach方式直接读取kafka的数据,直接分配每个Batch及RDD最新的Topic partition offset,任务运行后使用kafka的Simple Consumer API去获取那一段的offset的数据,这样的好处是避免了原来Receiver接受数据宕机带来的数据可靠性风险,相当于原来的数据是在内存中而现在的数据是在kafka的磁盘中,通过偏移量可随时再次消费数据,从而实现了数据的Exactly Once处理,此外还有个不同之处在于1.3之后,使用的checkpoint保存当前消费的kafka的offset,而之前用zk保存的

由于CheckPoint是将程序及其临时数据,rdd链条保存到文件中,等第二次再启动时进行恢复。

但是如果修改代码,那就可能出现两种情况:

  • 执行的以前的代码逻辑
  • 反序列化失败

解决办法:

  • 两个版本的jar一起跑一段时间(存在重复消费的问题)
  • 手动保存Kafka offset,弃用CheckPoint(保存在zookeeper或者mysql)

引用大佬代码:https://github.com/cpbaranwal/Spark-Streaming-DirectKafka-Examples/blob/master/src/main/scala/CustomDirectKafkaExample.scala

package main.scala

object CustomDirectKafkaExample {
  private val conf = ConfigFactory.load()
  private val sparkStreamingConf = conf.getStringList("CustomDirectKafkaExample-List").asScala
  val sparkConf = new SparkConf()
  val logger = Logger.getLogger(CustomDirectKafkaExample.getClass)

  def main(args: Array[String]) {
    if (args.length < 2) {
      System.exit(1)
    }
    sparkConf.setAppName(conf.getString("CustomDirectKafkaExample")) //  setting spark conf parameters
    sparkStreamingConf.foreach { x => val split = x.split("="); sparkConf.set(split(0), split(1));}
    val sc = new SparkContext(sparkConf) //create spark and memsql context
    //  declare checkpoint directory,pass to getOrCreate() method
    val Array(brokers, topics) = args
    val checkpointDir = CHECKPOINT_DIRECTORY_REQUEST
    val kafkaParams = Map[String, String]("metadata.broker.list" -> brokers)
    val topicsSet = topics.split(",").toSet
    val ssc =  setupSsc(topicsSet, kafkaParams, checkpointDir,msc)
    /* Start the spark streaming   */
    ssc.start()
    ssc.awaitTermination();
  }//main() ends

  def setupSsc(topicsSet: Set[String], kafkaParams: Map[String, String])(): StreamingContext = {
    val sc = msc.sparkContext
    val ssc = new StreamingContext(sc, Seconds(conf.getInt("application.sparkbatchinterval")))
    /* create direct kafka stream */
    val messages = createCustomDirectKafkaStream(ssc,kafkaParams,"localhost","/kafka", topicsSet)
    val line = messages.map(_._2)
    val lines = line.flatMap(line => line.split("\n"))
    val filterLines = lines.filter { x => LogFilter.filter(x, "0") }
    filterLines.foreachRDD((rdd: RDD[String], time: Time) => {
      rdd.foreachPartition { partitionOfRecords =>
        {if(partitionOfRecords.isEmpty)
          {
            logger.info("partitionOfRecords FOUND EMPTY ,IGNORING THIS PARTITION")}
          else
          {
            /* write computation logic here  */
        }//else loop ends
      } //partition ends
       })
    ssc
  }//setUp(ssc) ends
  /* createDirectStream() method overloaded */
  def createCustomDirectKafkaStream(ssc: StreamingContext, kafkaParams: Map[String, String], zkHosts: String
                                    , zkPath: String, topics: Set[String]): InputDStream[(String, String)] = {
    val topic = topics.last //TODO only for single kafka topic right now
    val zkClient = new ZkClient(zkHosts, 30000, 30000)
    val storedOffsets = readOffsets(zkClient,zkHosts, zkPath, topic)
    val kafkaStream = storedOffsets match {
      case None => // start from the latest offsets
        KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)
      case Some(fromOffsets) => // start from previously saved offsets
        val messageHandler = (mmd: MessageAndMetadata[String, String]) => (mmd.key, mmd.message)
        KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder
          , (String, String)](ssc, kafkaParams, fromOffsets, messageHandler)
        }
    // save the offsets
    kafkaStream.foreachRDD(rdd => saveOffsets(zkClient,zkHosts, zkPath, rdd))
    kafkaStream
  }

  /*
   Read the previously saved offsets from Zookeeper
    */
  private def readOffsets(zkClient: ZkClient,zkHosts:String, zkPath: String, topic: String):
  Option[Map[TopicAndPartition, Long]] = {
    logger.info("Reading offsets from Zookeeper")
    val stopwatch = new Stopwatch()
    val (offsetsRangesStrOpt, _) = ZkUtils.readDataMaybeNull(zkClient, zkPath)
    offsetsRangesStrOpt match {
      case Some(offsetsRangesStr) =>
        logger.info(s"Read offset ranges: ${offsetsRangesStr}")
        val offsets = offsetsRangesStr.split(",")
          .map(s => s.split(":"))
          .map { case Array(partitionStr, offsetStr) => (TopicAndPartition(topic, partitionStr.toInt) -> offsetStr.toLong) }
          .toMap
        logger.info("Done reading offsets from Zookeeper. Took " + stopwatch)
        Some(offsets)
      case None =>
        logger.info("No offsets found in Zookeeper. Took " + stopwatch)
        None
    }
  }

  private def saveOffsets(zkClient: ZkClient,zkHosts:String, zkPath: String, rdd: RDD[_]): Unit = {
    logger.info("Saving offsets to Zookeeper")
    val stopwatch = new Stopwatch()
    val offsetsRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
    offsetsRanges.foreach(offsetRange => logger.debug(s"Using ${offsetRange}"))
    val offsetsRangesStr = offsetsRanges.map(offsetRange => s"${offsetRange.partition}:${offsetRange.fromOffset}")
      .mkString(",")
    logger.info("chandan Writing offsets to Zookeeper zkClient="+zkClient+"  zkHosts="+zkHosts+"zkPath="+zkPath+"  offsetsRangesStr:"+ offsetsRangesStr)
    ZkUtils.updatePersistentPath(zkClient, zkPath, offsetsRangesStr)
    logger.info("Done updating offsets in Zookeeper. Took " + stopwatch)
  }

  class Stopwatch {
    private val start = System.currentTimeMillis()
    override def toString() = (System.currentTimeMillis() - start) + " ms"
  }


}

你可能感兴趣的:(SparkStreaming坑)