- macOS生成密钥对教程
大大小小聪明
macossshgithub
在macOS下生成密钥对(如SSH密钥)可通过终端命令完成,以下是详细步骤:方法1:使用ssh-keygen生成SSH密钥对(推荐)打开终端通过Spotlight搜索(Command+空格)输入Terminal并打开。生成密钥对输入以下命令(推荐使用更安全的ed25519算法,或兼容性更好的RSA):#使用ed25519算法(更安全高效)ssh-keygen-ted25519-C"your_ema
- 主力用计算机吸筹,通达信主力吸筹+主力轨迹副图源码 贴图
想法臃肿
主力用计算机吸筹
好股票软件下载网(www.goodgupiao.com)提示:您正在下载的是:通达信主力吸筹+主力轨迹副图源码贴图主力吸筹指标源码:VAR1:=REF((LOW+OPEN+CLOSE+HIGH)/4,1);VAR2:=SMA(ABS(LOW-VAR1),13,1)/SMA(MAX(LOW-VAR1,0),10,1);VAR3:=EMA(VAR2,10);VAR4:=LLV(LOW,33);VAR5
- Python面试题1
追逐此刻
面试python开发语言
1、列表(list)和元组(tuple)有什么区别?列表可变,元组不可变列表有序,表示同一类的对象;元组可用来表示不同数据类型的数据结构如(2,“Ema”,“2020–04–16”)(#id,名称,创建日期)。2、如何进行字符串插值?%格式化print("Mynameis%sandIam%dyearsold."%(name,age))str.format()print("Mynameis{}and
- InfluxDB 高级分析实战:预测、技术指标与异常检测全指南
梦想画家
数据分析工程InfluxDB数据分析
InfluxDB不仅是强大的时序数据存储引擎,更是企业构建智能分析系统的核心平台。本文全面解析如何利用InfluxDB内置函数与Python生态实现:✅预测分析:从简单季节性预测(HOLT_WINTERS)到复杂模型集成(Prophet/LSTM)✅技术指标计算:直接调用内置函数(EMA、KAMA、RSI)实现实时监控✅异常检测:基于统计规则(阈值监控)与机器学习模型(IsolationFores
- 财学堂倪仁勇-《趋势昆仑跟庄体系》高阶课程全套包日报、小班课更新
haitaoketangcn
大数据
课程简介学探市场涨跌奥秘,顺势起舞悟道昆仑倪仁勇财学堂特邀名师筹码峰宗师28年股市行业经验课程目录系统课1.学习识别确定性!如何选出未来的10倍股?.mp42.低估买入,高估卖出!讲解股价波动规律.mp43.学习具有10倍股潜力的选股方法.mp44.学习判断趋势!大趋势赚大钱,小趋势赚小钱.mp45.判断趋势的2个指标:EMA均线和MACD指标详解.mp46.学习判断中枢,领会买卖点要义.mp47
- Stable Diffusion底模对应的VAE推荐
Liudef06小白
stablediffusion
以下是主流StableDiffusion底模对应的VAE推荐表格:底模版本推荐VAE类型说明SD1.5SD1.5专用VAE通常使用vae-ft-mse-840000-ema-pruned.safetensorsSD2.0SD1.5兼容VAE或SD2专用VAE部分SD2模型需配套512-ema-only.vae.ptSD3内置VAESD3系列模型通常自带集成VAE无需额外配置SDXLSDXL专用VA
- 模型训练技巧EMA
羽星_s
深度学习计算机视觉自然语言处理EMA
前言文章理论推导部分参考指数移动平均(EMA)的原理及PyTorch实现在深度学习中,经常会使用**指数移动平均(ExponentialMovingAverage,EMA)**对模型参数做平均,因为模型权重在最后的nnn步内,会在实际的最优点处抖动,取最后nnn步的平均,能使得模型更加稳健。在一定程度上提高最终模型在测试数据上的表现。EMA也可以理解成对训练过程的中间模型进行融合的方法,因为训练的
- SwinTransformer改进(10):Efficient Multi-scale Attention (EMA) 增强的 Swin Transformer 模型
点我头像干啥
ViTsvit图像分类网络改进transformer深度学习人工智能
1.介绍本文将深入分析一个结合了EfficientMulti-scaleAttention(EMA)模块的SwinTransformer模型实现。该模型通过将EMA注意力机制集成到SwinTransformer的不同阶段,旨在增强模型的特征提取能力,同时保持SwinTransformer原有的层次化窗口注意力优势。模型架构1.EMA(EfficientMulti-scaleAttention)模块
- pytorch训练之EMA使用
AIVoyager
pytorchpytorch人工智能python
目录原理使用逻辑权重平均(SWA和EMA)构建平均模型自定义平均策略SWA学习率调度处理批归一化SWA示例EMA示例参考原理在深度学习中用于创建模型的指数移动平均(ExponentialMovingAverage,EMA)的副本。通常,指数移动平均是用来平滑模型的参数,以提高模型的泛化能力。在这段代码中,model是原始模型,deepcopy函数用于创建模型的深层副本,避免共享内存。在训练过程中,
- 量化指标公式源码_最牛通达信量化副图指标公式源码
胡匪
量化指标公式源码
M1:=5;M2:=10;ZLCM:=EMA(WINNER(CLOSE)*70,3);{//主力筹码估算}SHCM:=EMA((WINNER(CLOSE*1.1)-WINNER(CLOSE*0.9))*80,3);{//小筹码估算}ZSHTL:=SHCM/(ZLCM+SHCM)*100;{//小股民套牢筹码比率}ZZLKP:=ZLCM/(ZLCM+SHCM)*100;{//主力控盘筹码比率}ZCM
- 721.力扣每日一题7/15 Java(并查集)
天天困啊
算法练习算法java数据结构leetcode
博客主页:音符犹如代码系列专栏:算法练习关注博主,后期持续更新系列文章如果有错误感谢请大家批评指出,及时修改感谢大家点赞收藏⭐评论✍目录解题思路解题过程时间复杂度空间复杂度Code解题思路本题的解题思想主要是利用并查集(UnionFind)数据结构来合并具有相同账户名称的邮箱地址。首先,我们遍历所有账户信息,建立邮箱地址到唯一索引的映射(emailToIndex)和邮箱地址到账户名称的映射(ema
- MACD 是一个什么指标?
欧先生^_^
人工智能算法
MACD,全称是MovingAverageConvergenceDivergence,即移动平均聚散指标,是一种常用的技术分析指标,用于判断股票价格趋势的强度、方向、动能以及可能的反转点。它是根据指数移动平均线(EMA)的收敛和发散情况计算出来的。1.基本概念:EMA(ExponentialMovingAverage):指数移动平均线。它对近期的价格赋予更高的权重,因此比简单移动平均线(SMA)更
- VectorBT:使用PyTorch+Transformer训练和回测股票模型 进阶五
船长@Quant
Python金融科技pythonpytorchtransformervectorbtsklearn量化策略量化交易
VectorBT:使用PyTorch+Transformer训练和回测股票模型进阶五本方案基于PyTorch框架与Transformer模型,结合VectorBT回测引擎构建多股票量化交易系统,采用滑动窗口技术构建时序特征,通过自注意力机制捕捉市场规律预测收益率,集成双EMA交叉策略动态生成交易信号,利用Optuna优化模型超参与策略参数,支持增量训练更新特征分布,结合波动率调整非线性仓位,并通过
- 【diffusers 进阶(十二)】Lora 具体是怎么加入模型的(推理代码篇下)OminiControl
多恩Stone
编程学习AIGCDiffusionpythonAIGC人工智能stablediffusion
【diffusers极速入门(一)】pipeline实际调用的是什么?call方法!【diffusers极速入门(二)】如何得到扩散去噪的中间结果?Pipelinecallbacks管道回调函数【diffusers极速入门(三)】生成的图像尺寸与UNet和VAE之间的关系【diffusers极速入门(四)】EMA操作是什么?【diffusers极速入门(五)】扩散模型中的Scheduler(noi
- 【指标对比】SMA 和 EMA区别
T-I-M
时间序列
在描述时间序列趋势(如股票价格)时,简单移动平均(SMA)和指数移动平均(EMA)各有特点。以下是详细分析:一、核心对比指标SMAEMA权重分配等权重指数衰减权重滞后性较高较低噪声敏感性较不敏感更敏感计算复杂度简单需要递归计算参数敏感性对窗口大小敏感对衰减因子敏感二、特性分析1.SMA(简单移动平均)公式:SMAt=1n∑i=0n−1Pt−iSMA_t=\frac{1}{n}\sum_{i=0}^
- 基于 EMA12 指标结合 iTick 外汇报价 API 、股票报价API、指数报价API的量化策略编写与回测
iTick提供了强大的外汇报价API、股票报价API和指数报价API服务,为量化策略的开发提供了丰富的数据支持。本文将详细介绍如何使用Python结合EMA12指标和iTick的报价API来构建一个简单的量化交易策略,并对该策略进行回测。1.引言在量化交易领域,技术指标是构建交易策略的重要基础。iTick提供了强大的外汇报价API、股票报价API和指数报价API服务,为量化策略的开发提供了丰富的数
- YOLOv8改进策略【注意力机制篇】| EMA 即插即用模块,提高远距离建模依赖(含C2f二次创新)
Limiiiing
YOLOv8改进专栏YOLO计算机视觉深度学习目标检测
一、本文介绍本文记录的是基于EMA模块的YOLOv8目标检测改进方法研究。EMA认为跨维度交互有助于通道或空间注意力预测,并且解决了现有注意力机制在提取深度视觉表示时可能带来的维度缩减问题。在改进YOLOv8的过程中能够为高级特征图产生更好的像素级注意力,能够建模长程依赖并嵌入精确的位置信息。专栏目录:YOLOv8改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Ne
- YOLOv5改进:在C3块不同位置添加EMA注意力机制,有效提升计算机视觉性能
UksApps
YOLO计算机视觉深度学习
计算机视觉中的目标检测是一个重要的任务,而YOLOv5是目前广泛应用的一种高效目标检测算法。为了进一步提升YOLOv5的性能,我们在C3块的不同位置添加了EMA(ExponentialMovingAverage)注意力机制。EMA注意力机制是一种用于提升模型的感知能力和特征表达能力的技术。在YOLOv5中,我们将EMA注意力机制嵌入到C3块中,以增强这一块的特征表示能力。下面是我们改进的YOLOv
- 指数移动平均(EMA)策略
Sherry Wangs
深度学习深度学习python机器学习
文章目录概述具体步骤代码实现概述指数移动平均(EMA)是一种加权移动平均的方法,它给予近期数据更高的权重,同时也考虑到了历史数据的影响。在神经网络领域,EMA常被用于对模型参数进行平滑处理,使得网络模型在训练过程中能够更加稳定且泛化能力可能得到提升。具体步骤假设我们有一个神经网络模型,其参数为θ\thetaθ(例如权重矩阵和偏置向量等),我们要使用EMA策略来更新这些参数。初始化EMA参数:设θe
- Vgg 改进:添加EMA注意力机制高效提升跨空间学习
听风吹等浪起
AI改进系列学习人工智能计算机视觉深度学习
目录1.EMAAttention模块2.vgg改进3.完整代码Tips:融入模块后的网络经过测试,可以直接使用,设置好输入和输出的图片维度即可1.EMAAttention模块EMA(ExponentialMovingAverage,指数移动平均)注意力机制是一种结合了指数移动平均和注意力机制的模型,旨在通过引入时间序列的平滑特性来增强注意力机制的效果。它常用于处理序列数据(如自然语言处理、时间序列
- 记录使用python smtplib邮件发送
Wiktok
python前端javascript
基于多源异构数据存储管理系统开发时遇到的邮件发送问题,这里做一下记录。importsmtplib#导入smtplib模块,用于发送邮件fromemail.mime.textimportMIMEText#从email.mime.text导入MIMEText类,用于构建文本邮件fromemail.headerimportHeader#从email.header导入Header类,用于设置邮件头部ema
- Python高效量化的选择-fengwo模块
kogj
python开发语言
Python高效量化的选择-fengwo模块关于fengwo模块使用环境使用及函数说明1.引入模块2.通用说明3.基础函数4.指标类函数5.进阶函数6.通达信公式DLL函数(Windows专用,Linux不支持)关于fengwo模块fengwo模块是Python量化的麦语言扩展,他跟其它Python麦语言扩展比较有以下特点:1、所有函数使用C/C++编写,运行速度快2、所有基础函数如MA/EMA/
- YOLOv10改进策略【注意力机制篇】| EMA 即插即用模块,提高远距离建模依赖(含二次创新)
Limiiiing
YOLOv10改进专栏YOLO目标跟踪计算机视觉深度学习
一、本文介绍本文记录的是基于EMA模块的YOLOv10目标检测改进方法研究。EMA认为跨维度交互有助于通道或空间注意力预测,并且解决了现有注意力机制在提取深度视觉表示时可能带来的维度缩减问题。在改进YOLOv10的过程中能够为高级特征图产生更好的像素级注意力,能够建模长程依赖并嵌入精确的位置信息。专栏目录:YOLOv10改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF
- 【diffusers极速入门(四)】EMA 操作是什么?
多恩Stone
DiffusionAIGCTransformer人工智能深度学习pytorchpythonAIGCdiffusers
系列文章目录【diffusers极速入门(一)】pipeline实际调用的是什么?call方法!【diffusers极速入门(二)】如何得到扩散去噪的中间结果?Pipelinecallbacks管道回调函数【diffusers极速入门(三)】生成的图像尺寸与UNet和VAE之间的关系本文将介绍diffusers中常见的EMA操作。提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章
- 【diffusers极速入门(六)】缓存梯度和自动放缩学习率以及代码详解
多恩Stone
AIGCDiffusion编程学习diffuserspytorchAIDeeplearningAIGCpython
系列文章目录【diffusers极速入门(一)】pipeline实际调用的是什么?call方法!【diffusers极速入门(二)】如何得到扩散去噪的中间结果?Pipelinecallbacks管道回调函数【diffusers极速入门(三)】生成的图像尺寸与UNet和VAE之间的关系【diffusers极速入门(四)】EMA操作是什么?【diffusers极速入门(五)】扩散模型中的Schedul
- stable diffusion webui学习总结(3):参数设置
shanesu
stablediffusion学习
一、2.5D偏卡通风格参数设置:步骤1、文生图模型:darkSushiMixMixVAE:vae-ft-mse-840000-ema-pruned正面提示词:(masterpiece,highquality,highres,illustration),blurrybackground,[(whitebackground:1.2)::5],(see-through:0.85),shining,Mov
- Maven依赖最佳实践
gqltt
Javamavenjava前端
1、排除依赖剔除传递依赖,改直接依赖4.0.0com.juvenxu.mvnbookproject-a1.0.0com.juvenxu.mvnbookproject-b1.0.0com.juvenxu.mvnbookproject-ccom.juvenxu.mvnbookproject-c1.1.02、归类依赖中定义常量,中使用4.0.0com.juvenxu.mvnbookaccount-ema
- 8. 详解低门槛搭建个人量化平台 - backtrader+pyfolio 做策略回测(6)
阿岛格
量化backtraderpython策略回测
记录最近用backtrader+pyfolio做策略回测。安装backtrader和pyfolio:pipinstallbacktraderpipinstallpyfolio导入backtrader和pyfolio:importbacktraderasbtimportpyfolioaspf在代码中,先定义策略class(以EMAcross策略为例)。EMACross:EMA(Exponential
- 通达信指标 长阳反包介入 副图指标+选股公式 源码
goodgongshicom
通达信指标长阳反包介入副图指标+选股公式源码GOODGONGSHI2:=REF(LOW,1);GOODGONGSHI3:=SMA(ABS(LOW-GOODGONGSHI2),13,1)/SMA(MAX(LOW-GOODGONGSHI2,0),13,1)*100;GOODGONGSHI4:=EMA(IF(CLOSE*1.2,GOODGONGSHI3*13,GOODGONGSHI3/13),13);G
- MogaNet实战:使用 MogaNet实现图像分类任务(二)
AI浩
图像分类人工智能人工智能深度学习计算机视觉
文章目录训练部分导入项目使用的库设置随机因子设置全局参数图像预处理与增强读取数据设置Loss设置模型设置优化器和学习率调整策略设置混合精度,DP多卡,EMA定义训练和验证函数训练函数验证函数调用训练和验证方法运行以及结果查看测试完整的代码在上一篇文章中完成了前期的准备工作,见链接:MogaNet实战:使用MogaNet实现图像分类任务(一)前期的工作主要是数据的准备,安装库文件,数据增强方式的讲解
- log4j对象改变日志级别
3213213333332132
javalog4jlevellog4j对象名称日志级别
log4j对象改变日志级别可批量的改变所有级别,或是根据条件改变日志级别。
log4j配置文件:
log4j.rootLogger=ERROR,FILE,CONSOLE,EXECPTION
#log4j.appender.FILE=org.apache.log4j.RollingFileAppender
log4j.appender.FILE=org.apache.l
- elk+redis 搭建nginx日志分析平台
ronin47
elasticsearchkibanalogstash
elk+redis 搭建nginx日志分析平台
logstash,elasticsearch,kibana 怎么进行nginx的日志分析呢?首先,架构方面,nginx是有日志文件的,它的每个请求的状态等都有日志文件进行记录。其次,需要有个队 列,redis的l
- Yii2设置时区
dcj3sjt126com
PHPtimezoneyii2
时区这东西,在开发的时候,你说重要吧,也还好,毕竟没它也能正常运行,你说不重要吧,那就纠结了。特别是linux系统,都TMD差上几小时,你能不痛苦吗?win还好一点。有一些常规方法,是大家目前都在采用的1、php.ini中的设置,这个就不谈了,2、程序中公用文件里设置,date_default_timezone_set一下时区3、或者。。。自己写时间处理函数,在遇到时间的时候,用这个函数处理(比较
- js实现前台动态添加文本框,后台获取文本框内容
171815164
文本框
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://w
- 持续集成工具
g21121
持续集成
持续集成是什么?我们为什么需要持续集成?持续集成带来的好处是什么?什么样的项目需要持续集成?... 持续集成(Continuous integration ,简称CI),所谓集成可以理解为将互相依赖的工程或模块合并成一个能单独运行
- 数据结构哈希表(hash)总结
永夜-极光
数据结构
1.什么是hash
来源于百度百科:
Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入,通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
- 乱七八糟
程序员是怎么炼成的
eclipse中的jvm字节码查看插件地址:
http://andrei.gmxhome.de/eclipse/
安装该地址的outline 插件 后重启,打开window下的view下的bytecode视图
http://andrei.gmxhome.de/eclipse/
jvm博客:
http://yunshen0909.iteye.com/blog/2
- 职场人伤害了“上司” 怎样弥补
aijuans
职场
由于工作中的失误,或者平时不注意自己的言行“伤害”、“得罪”了自己的上司,怎么办呢?
在职业生涯中这种问题尽量不要发生。下面提供了一些解决问题的建议:
一、利用一些轻松的场合表示对他的尊重
即使是开明的上司也很注重自己的权威,都希望得到下属的尊重,所以当你与上司冲突后,最好让不愉快成为过去,你不妨在一些轻松的场合,比如会餐、联谊活动等,向上司问个好,敬下酒,表示你对对方的尊重,
- 深入浅出url编码
antonyup_2006
应用服务器浏览器servletweblogicIE
出处:http://blog.csdn.net/yzhz 杨争
http://blog.csdn.net/yzhz/archive/2007/07/03/1676796.aspx
一、问题:
编码问题是JAVA初学者在web开发过程中经常会遇到问题,网上也有大量相关的
- 建表后创建表的约束关系和增加表的字段
百合不是茶
标的约束关系增加表的字段
下面所有的操作都是在表建立后操作的,主要目的就是熟悉sql的约束,约束语句的万能公式
1,增加字段(student表中增加 姓名字段)
alter table 增加字段的表名 add 增加的字段名 增加字段的数据类型
alter table student add name varchar2(10);
&nb
- Uploadify 3.2 参数属性、事件、方法函数详解
bijian1013
JavaScriptuploadify
一.属性
属性名称
默认值
说明
auto
true
设置为true当选择文件后就直接上传了,为false需要点击上传按钮才上传。
buttonClass
”
按钮样式
buttonCursor
‘hand’
鼠标指针悬停在按钮上的样子
buttonImage
null
浏览按钮的图片的路
- 精通Oracle10编程SQL(16)使用LOB对象
bijian1013
oracle数据库plsql
/*
*使用LOB对象
*/
--LOB(Large Object)是专门用于处理大对象的一种数据类型,其所存放的数据长度可以达到4G字节
--CLOB/NCLOB用于存储大批量字符数据,BLOB用于存储大批量二进制数据,而BFILE则存储着指向OS文件的指针
/*
*综合实例
*/
--建立表空间
--#指定区尺寸为128k,如不指定,区尺寸默认为64k
CR
- 【Resin一】Resin服务器部署web应用
bit1129
resin
工作中,在Resin服务器上部署web应用,通常有如下三种方式:
配置多个web-app
配置多个http id
为每个应用配置一个propeties、xml以及sh脚本文件
配置多个web-app
在resin.xml中,可以为一个host配置多个web-app
<cluster id="app&q
- red5简介及基础知识
白糖_
基础
简介
Red5的主要功能和Macromedia公司的FMS类似,提供基于Flash的流媒体服务的一款基于Java的开源流媒体服务器。它由Java语言编写,使用RTMP作为流媒体传输协议,这与FMS完全兼容。它具有流化FLV、MP3文件,实时录制客户端流为FLV文件,共享对象,实时视频播放、Remoting等功能。用Red5替换FMS后,客户端不用更改可正
- angular.fromJson
boyitech
AngularJSAngularJS 官方APIAngularJS API
angular.fromJson 描述: 把Json字符串转为对象 使用方法: angular.fromJson(json); 参数详解: Param Type Details json
string
JSON 字符串 返回值: 对象, 数组, 字符串 或者是一个数字 示例:
<!DOCTYPE HTML>
<h
- java-颠倒一个句子中的词的顺序。比如: I am a student颠倒后变成:student a am I
bylijinnan
java
public class ReverseWords {
/**
* 题目:颠倒一个句子中的词的顺序。比如: I am a student颠倒后变成:student a am I.词以空格分隔。
* 要求:
* 1.实现速度最快,移动最少
* 2.不能使用String的方法如split,indexOf等等。
* 解答:两次翻转。
*/
publ
- web实时通讯
Chen.H
Web浏览器socket脚本
关于web实时通讯,做一些监控软件。
由web服务器组件从消息服务器订阅实时数据,并建立消息服务器到所述web服务器之间的连接,web浏览器利用从所述web服务器下载到web页面的客户端代理与web服务器组件之间的socket连接,建立web浏览器与web服务器之间的持久连接;利用所述客户端代理与web浏览器页面之间的信息交互实现页面本地更新,建立一条从消息服务器到web浏览器页面之间的消息通路
- [基因与生物]远古生物的基因可以嫁接到现代生物基因组中吗?
comsci
生物
大家仅仅把我说的事情当作一个IT行业的笑话来听吧..没有其它更多的意思
如果我们把大自然看成是一位伟大的程序员,专门为地球上的生态系统编制基因代码,并创造出各种不同的生物来,那么6500万年前的程序员开发的代码,是否兼容现代派的程序员的代码和架构呢?
- oracle 外部表
daizj
oracle外部表external tables
oracle外部表是只允许只读访问,不能进行DML操作,不能创建索引,可以对外部表进行的查询,连接,排序,创建视图和创建同义词操作。
you can select, join, or sort external table data. You can also create views and synonyms for external tables. Ho
- aop相关的概念及配置
daysinsun
AOP
切面(Aspect):
通常在目标方法执行前后需要执行的方法(如事务、日志、权限),这些方法我们封装到一个类里面,这个类就叫切面。
连接点(joinpoint)
spring里面的连接点指需要切入的方法,通常这个joinpoint可以作为一个参数传入到切面的方法里面(非常有用的一个东西)。
通知(Advice)
通知就是切面里面方法的具体实现,分为前置、后置、最终、异常环
- 初一上学期难记忆单词背诵第二课
dcj3sjt126com
englishword
middle 中间的,中级的
well 喔,那么;好吧
phone 电话,电话机
policeman 警察
ask 问
take 拿到;带到
address 地址
glad 高兴的,乐意的
why 为什么
China 中国
family 家庭
grandmother (外)祖母
grandfather (外)祖父
wife 妻子
husband 丈夫
da
- Linux日志分析常用命令
dcj3sjt126com
linuxlog
1.查看文件内容
cat
-n 显示行号 2.分页显示
more
Enter 显示下一行
空格 显示下一页
F 显示下一屏
B 显示上一屏
less
/get 查询"get"字符串并高亮显示 3.显示文件尾
tail
-f 不退出持续显示
-n 显示文件最后n行 4.显示头文件
head
-n 显示文件开始n行 5.内容排序
sort
-n 按照
- JSONP 原理分析
fantasy2005
JavaScriptjsonpjsonp 跨域
转自 http://www.nowamagic.net/librarys/veda/detail/224
JavaScript是一种在Web开发中经常使用的前端动态脚本技术。在JavaScript中,有一个很重要的安全性限制,被称为“Same-Origin Policy”(同源策略)。这一策略对于JavaScript代码能够访问的页面内容做了很重要的限制,即JavaScript只能访问与包含它的
- 使用connect by进行级联查询
234390216
oracle查询父子Connect by级联
使用connect by进行级联查询
connect by可以用于级联查询,常用于对具有树状结构的记录查询某一节点的所有子孙节点或所有祖辈节点。
来看一个示例,现假设我们拥有一个菜单表t_menu,其中只有三个字段:
- 一个不错的能将HTML表格导出为excel,pdf等的jquery插件
jackyrong
jquery插件
发现一个老外写的不错的jquery插件,可以实现将HTML
表格导出为excel,pdf等格式,
地址在:
https://github.com/kayalshri/
下面看个例子,实现导出表格到excel,pdf
<html>
<head>
<title>Export html table to excel an
- UI设计中我们为什么需要设计动效
lampcy
UIUI设计
关于Unity3D中的Shader的知识
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,
- 如何禁止页面缓存
nannan408
htmljspcache
禁止页面使用缓存~
------------------------------------------------
jsp:页面no cache:
response.setHeader("Pragma","No-cache");
response.setHeader("Cache-Control","no-cach
- 以代码的方式管理quartz定时任务的暂停、重启、删除、添加等
Everyday都不同
定时任务管理spring-quartz
【前言】在项目的管理功能中,对定时任务的管理有时会很常见。因为我们不能指望只在配置文件中配置好定时任务就行了,因为如果要控制定时任务的 “暂停” 呢?暂停之后又要在某个时间点 “重启” 该定时任务呢?或者说直接 “删除” 该定时任务呢?要改变某定时任务的触发时间呢? “添加” 一个定时任务对于系统的使用者而言,是不太现实的,因为一个定时任务的处理逻辑他是不
- EXT实例
tntxia
ext
(1) 增加一个按钮
JSP:
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%>
<%
String path = request.getContextPath();
Stri
- 数学学习在计算机研究领域的作用和重要性
xjnine
Math
最近一直有师弟师妹和朋友问我数学和研究的关系,研一要去学什么数学课。毕竟在清华,衡量一个研究生最重要的指标之一就是paper,而没有数学,是肯定上不了世界顶级的期刊和会议的,这在计算机学界尤其重要!你会发现,不论哪个领域有价值的东西,都一定离不开数学!在这样一个信息时代,当google已经让世界没有秘密的时候,一种卓越的数学思维,绝对可以成为你的核心竞争力. 无奈本人实在见地