LLM之RAG实战(二十六)| 使用llamaindex-cli无需一行代码即可实现RAG

       本文将介绍一个无需一行代码即可实现RAG的开源工具:llamaindex-cli,该工具是基于llama-index实现的,并采用默认向量数据库Chroma,因此首先需要进行如下安装:

pip install llama-indexpip install chromadb

Step1:设置OpenAI API Key环境变量

      该工具默认采用OpenAI的API,因此需要配置OpenAI API Key,命令如下所示:

$ export OPENAI_API_KEY=

Step2:加载文件

      现在,需要将工具指向一些可以摄取到本地矢量数据库中的本地文件。对于本例,我们将获取LlamaIndex README.md文件:

$ llamaindex-cli rag --files "./README.md"

       您可以指定文件glob格式,例如:

$ llamaindex-cli rag --files "./docs/**/*.rst"

Step3:进行问答

       你现在可以开始就你在前一步中摄入的任何文件提问:

$ llamaindex-cli rag --question "What is LlamaIndex?" LlamaIndex is a data framework that helps in ingesting, structuring, and accessing private or domain-specific data for LLM-based applications. It provides tools such as data connectors to ingest data from various sources, data indexes to structure the data, and engines for natural language access to the data. LlamaIndex follows a Retrieval-Augmented Generation (RAG) approach, where it retrieves information from data sources, adds it to the question as context, and then asks the LLM to generate an answer based on the enriched prompt. This approach overcomes the limitations of fine-tuning LLMs and provides a more cost-effective, up-to-date, and trustworthy solution for data augmentation. LlamaIndex is designed for both beginner and advanced users, with a high-level API for easy usage and lower-level APIs for customization and extension.

Step4:打开聊天REPL

      你甚至可以在你的终端内打开聊天界面!只需运行llamaindex-cli-rag-chat,并开始询问有关您获取的文件的问题。

补充:

     您可以自定义llamaindex-cli以使用任何LLM模型,甚至是像Mixtral 8x7b到Ollama这样的本地模型,并且您可以构建更高级的查询和检索技术。更多详细资料,请查看文档[1]。

参考文献:

[1] https://docs.llamaindex.ai/en/stable/use_cases/q_and_a/rag_cli.html

[2] https://blog.llamaindex.ai/introducing-the-llamaindex-retrieval-augmented-generation-command-line-tool-a973fa519a41

你可能感兴趣的:(RAG,笔记,数据库)