- Python开发AI智能体(三)———Langchain定义提示词模板
【本人】
Agent智能体python人工智能langchain语言模型
前言上篇文章给大家介绍AI项目检测平台LangSmish以及开源框架Langchain的使用,并且带领大家编写了一个案例。这篇文章将介绍在Langchain框架中如何定义提示词模板一、什么是提示词模板?提示词模板(PromptTemplate)是大语言模型(LLM)应用开发中的核心概念,本质是预定义的提示结构框架。它通过将静态文本与动态变量结合,实现标准化、可复用的提示生成机制。它提示词可以是一个
- 干货!大模型时代一定要收藏的 20 个LLM 中文数据集
OpenBayes
资源上新人工智能语言模型数据库机器学习
自ChatGPT重磅推出以来,大语言模型(largelanguageModel,LLM)以其卓越的学习能力在各个领域引起轰动。大模型的训练和调优离不开优质庞大的数据支撑,精心构建的数据集不仅为大模型提供了充分的燃料,还为大模型在垂直领域的应用和性能提升提供了可能。本文整理了一些适用于大模型训练调优的热门中文公开数据集(按照首字母A-Z顺序排列),以供大家了解和使用。温馨提示:本文列举的所有数据集,
- AI正在偷偷取代这10种职业,你的工作安全吗?
近年来,人工智能(AI)的飞速发展正在悄然改变我们的工作方式。从自动化客服到AI生成内容,许多传统职业正面临被取代的风险。虽然AI带来了更高的效率和便利,但也让不少人开始担忧:我的工作会被AI抢走吗?今天,我们就来盘点10种最容易被AI取代的职业,并探讨如何在这个AI时代保持竞争力。1.客服代表取代指数:★★★★★AI驱动的聊天机器人(如ChatGPT、GoogleBard)已经能够处理大部分基础
- 【LlamaIndex核心组件指南 | 模型篇】一文通晓 LlamaIndex 模型层:LLM、Embedding 及多模态应用全景解析
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- Prompt Engineering for Large Language Models
三月七꧁ ꧂
论文合集llm+promptprompt语言模型人工智能自然语言处理pdfjavascript前端
题目大型语言模型的快速工程简介 随着OpenAI的ChatGPT和Google的Bard等软件的普及,大语言模型(LLM)已经渗透到生活和工作的许多方面。例如,ChatGPT可用于提供定制食谱,建议替换缺失的成分。它可用于起草研究提案、用多种编程语言编写工作代码、在语言之间翻译文本、协助政策制定等等(Gao2023)。用户通过“提示”或自然语言指令与大型语言模型进行交互。精心设计的提示可以带
- “自动化失败归因”测试集-Who&When
liliangcsdn
自动化人工智能语言模型
在MAS(Multi-Agent系统)中,Agent之间自主协作、信息链条长,异常常见而且诊断困难。Who&When就是测者MAS系统异常诊断的benchmark。Who&When的prompt问题来源于GAIAandAssistantBench,包含了127个LLMMulti-Agent系统中收集的异常日志,并经过系统和人工处理。Who&When样本配有如下所示的细粒度标注:“谁”(Who):哪
- GPT-4o重磅升级!只需一条指令,教你秒出SCI级专业科研图!
智写AI
AI学术写作指南信息可视化人工智能
经过数月爆肝,七哥终于完成专业的学术AI使用教程,估计也有个80万字的详细操作指南。分为多个细分的专业写作场景,跟着一步一步操作,借助ChatGPT做学术、干科研、写论文、课题申报都变得超简单。欢迎加我交流(yida985),祝你一臂之力。七哥之前写过关于用AI生成流程图的教程,不过需要借助其他软件才能搞定完美的流程图。近期GPT-4o全新推出了“生图功能”,这个生图的过程就更加方便轻松了,全能G
- 利用chatGPT提取复杂json数据到excel文件中
z日火
工具使用excelchatgptjson
利用chatGPT提取复杂json数据到excel文件中1利用swagger导出json类型的接口数据2使用hiJson工具查看json结构3利用ChatGPT写python代码解析数据4复制代码到vscode运行任务说明:整理一个项目的所有接口,保存到excel文档中。在这里插入图片描述1利用swagger导出json类型的接口数据2使用hiJson工具查看json结构我需要json数据的"pa
- 提示词编程语言设计艺术探索
AI天才研究院
计算AI人工智能与大数据AI大模型企业级应用开发实战javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《提示词编程语言设计艺术探索》关键词:提示词编程语言,设计艺术,编程语言设计,核心算法,实例分析,项目实战摘要:本文旨在深入探讨提示词编程语言的设计艺术,从基础概念到核心算法,再到实际应用和未来趋势,全面解析这一领域的关键技术和设计理念。通过具体的实例分析和项目实战,帮助读者更好地理解和掌握提示词编程语言的设计与实现。引言与概述1.1提示词编程语言的背景和重要性提示词编程语言(Prompt-Bas
- 攻击者利用热门AI发动黑帽SEO攻击,通过污染搜索结果传播窃密木马
FreeBuf-
人工智能
伪装成AI主题网站的恶意页面|图片来源:ZscalerZscaler威胁实验室研究人员发现一起精心策划的恶意软件攻击活动,攻击者利用ChatGPT和LumaAI等人工智能(AI)工具的热度,通过黑帽SEO(搜索引擎优化)技术劫持搜索引擎结果,诱导用户落入恶意软件陷阱。Zscaler警告称:"这些攻击背后的威胁行为者正在利用ChatGPT和LumaAI等AI工具的热度。"这些欺诈活动至少从2025年
- 二十九:Dynamic Prompts插件动态提示词讲解
DarkQE
stablediffusion0基础学习stablediffusion
引言:可变化提示词,随机抽取不固定使用方式一:{提示词1|提示词2|。。。。}------从提示词种随机抽取生成方式二:{25::提示词1|75::提示词2}------数字为每个提示词的占比,相当于权重方式三:{2$$提示词1|提示词2|提示词3|提示词4|。。。}从中选区2个搭配生成(可以换比如2-3意思为两到三个搭配组合生成)
- LLM推理入门实践:基于 Hugging Face Transformers 和 vLLM
ctrl A_ctrl C_ctrl V
#大模型llmpython自然语言处理人工智能
文章目录1.HuggingFace模型下载2.HuggingFaceTransformers库模型推理3.关于prompt的组成:system、user、assistant4.vLLM模型推理vLLM的多卡推理踩坑1.HuggingFace模型下载模型在HuggingFace下载,如果下载速度太慢,可以在HuggingFace镜像网站或ModelScope进行下载。使用HuggingFace的下载
- 【AIGC-ChatGPT提示词】心灵笔记:打造温暖治愈的职场年终回顾系统
AI小欧同学
AIGCchatgpt笔记
感谢信任,专栏出现0-1的历史突破❤️❤️好了,开始今天的内容今天继续回馈大家,最近都是可以在自媒体上使用的提示词。提示词在最下方引言在每年岁末时分,我们都期待着对过去一年进行总结与回顾。然而,传统的工作总结往往过于注重数据和绩效,容易忽视个人的情感体验和内心成长。"心灵笔记"系统正是为了解决这一痛点而设计,它致力于将冰冷的职场经历转化为温暖治愈的内心独白,帮助人们以更有温度的方式记录自己的职业生
- 2025大模型入门必读:Prompt指令技巧精讲,看这一篇就够了!
大模型研究院
prompt人工智能学习方法机器学习大数据大模型产品经理
一、提示词的基本概念在人工智能生成内容(AIGC)迅速发展的今天,如何有效地与AI大模型沟通,让它们产出我们真正需要的内容,已经成为一项重要技能。而这项技能的核心,就是本文要深入探讨的"提示词工程"(PromptEngineering)。1.1什么是提示词提示词(Prompt)是用户输入给AI大模型的指令,是人类与AI之间沟通的桥梁。一个好的提示词能够明确地传达我们的意图,引导AI生成符合我们期望
- 解锁ChatGPT高级玩法:模块化提示词库开发指南
LCG元
大模型chatgpt
目录一、引言:为什么需要模块化提示词库?二、模块化提示词库设计原理2.1核心架构2.2模块功能说明⚙️三、模块化提示词库开发实践(附Python源码)3.1环境配置3.2模块化提示词生成器3.3提示词组合引擎四、可视化流程设计4.1模块化提示词工作流4.2可视化编辑界面设计五、应用案例:电商客服提示词库5.1模块配置示例5.2效果对比六、总结与资源一、引言:为什么需要模块化提示词库?传统单一提示词
- 找组织——机器学习社区、团体洞察
小哥伯涵
机器学习人工智能
在Github上,有一些中文社区可以看一看:prompt“如果我是个AI小白,想参加到一个组织,接收最新的AI有趣源项目、一些定期的刊物等。我应该加入哪些组织?”AI社区——深度学习社区Reddit上的MachineLearningsubreddit:https://www.reddit.com/r/MachineLearning/是一个拥有超过400,000名成员的活跃社区。在这里,您可以找到有
- AI能力集成设计与Prompt策略
大数据张老师
人工智能promptAI架构
AI能力集成设计与Prompt策略在智能客服系统中引入AI能力,必须建立一套架构化、可扩展的AI服务集成体系,并根据不同业务场景制定Prompt策略,从而实现稳定、精准、高效的AI响应能力。AI能力集成的关键组件设计AI能力集成架构的核心在于通过标准化模块完成请求的预处理、意图识别、Prompt构造、模型调用与响应后处理。以下是系统架构中关键组件的说明:API网关:统一接收用户请求,进行身份校验、
- Prompt Engineering终极手册:构建高效AI提示词库的完整技术路线
LCG元
大模型prompt人工智能
目录一、提示词库构建核心架构二、关键技术实现步骤1.数据采集与清洗2.提示词向量化编码3.聚类分析与分类存储三、API服务化部署四、性能优化方案五、监控与持续优化六、应用效果展示本文将深入探讨构建企业级AI提示词库的完整技术方案,含数据处理、模型训练、部署监控全流程代码实现在AI应用爆炸式增长的今天,提示词质量直接决定模型输出效果。本文将手把手教你构建企业级提示词库,涵盖以下核心技术环节:一、提示
- [CVPR 2025] 高效无监督Prompt与偏好对齐驱动的半监督医学分割
alfred_torres
prompt医学图像分割
CVPR2025|优化SAM:高效无监督Prompt与偏好对齐驱动的半监督医学分割论文信息标题:EnhancingSAMwithEfficientPromptingandPreferenceOptimizationforSemi-supervisedMedicalImageSegmentation作者:AishikKonwer,ZhijianYang,ErhanBas,CaoXiao,Pratee
- 为何在 FastAPI 中需要允许跨域访问(CORS)?(Grok3 回答)
晨欣
fastapipython
prompt:你是一个文笔流畅、专业性极强的技术博客博主,你将结合具体的例子和实际代码解释写一篇为何后端选择fastapi框架时,需要允许跨域访问。为何在FastAPI中需要允许跨域访问(CORS)?在现代Web开发中,前后端分离已经成为主流架构模式。前端通常运行在浏览器中(例如通过React、Vue.js或Angular构建的单页应用),而后端则通过API提供数据支持,比如使用Python的Fa
- Anaconda 创建python3.9+pytorch1.10.1+cuda11.3环境
canny_kevin
DeepLearningPythonpythonconda
1.打开AnacondaPowershellPrompt2.创建conda环境condacreate--nameRordAIpython=3.9conda一些命令condainfo--envs:输出中带有【*】号的的就是当前所处的环境condalist:看这个环境下安装的包和版本condainstallnumpyscikit-learn:安装numpysklearn包condaenvremove-
- Prompt工程深度解析:从指令模型到前沿模型的提示词设计演进
木鱼时刻
大模型prompt人工智能
深入探讨Prompt工程的核心原理,分析不同代际模型的能力差异,揭示企业级提示词模板化的价值与实践目录1.概述2.Prompt基础:核心要素与原则3.模型演进与Prompt策略差异4.企业级Prompt工程5.Prompt工程技术体系6.特殊任务实践技巧7.总结8.参考资料1.概述随着大语言模型(LLM)技术的飞速迭代,我们正处于一个关键的转折点。模型的演进不再是简单的参数增长,而是在核心能力上产
- 【Go语言-Day 8】告别冗长if-else:深入解析 switch-case 的优雅之道
吴师兄大模型
Go语言从入门到精通golang开发语言后端go语言人工智能if-else大模型
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 【Python-Day 30】从 self、cls 到 @staticmethod:Python 面向对象三大方法深度解析
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- OpenAI “黑手党“:硅谷新一代创业势力崛起,重塑AI时代格局
花生糖@
AI·未来创业创新AI创业
引言:从ChatGPT到超级智能——OpenAI生态的裂变效应2015年成立的OpenAI,凭借ChatGPT的横空出世彻底改变了人工智能产业格局。随着估值飙升至3000亿美元,这家颠覆性创新实验室正经历一场静默的"人才大迁徙"。昔日塑造AGI(通用人工智能)梦想的核心团队成员,如今正带着各自的技术愿景,在硅谷掀起新一轮创业浪潮。这场由OpenAI前员工发起的创业运动,正在形成堪比PayPalMa
- Unity AR构建维护系统的以AI驱动增强现实知识检索系统
Morpheon
unityar人工智能
本博客概述了为维护开发的AI驱动增强现实(AR)知识检索系统的开发过程,该系统集成了Unity用于AR、Python服务器用于后端处理,以及ChatGPT用于自然语言处理。该系统允许维护工人通过AR设备(如HoloLens2)查询特定任务的知识(例如,故障排除步骤),并以全息图形式显示上下文感知的响应。Unity账户注册中文账户注册比较困难。它需要额外的验证码验证步骤,有时即使验证成功也不会重定向
- AI赋能地产行业,助力地产数字化转型升级
YesPMP平台官方
人工智能chatgptAI应用开发
2023年,以AI为代表的各种新技术应用突然开始爆发。ChatGPT点燃全世界的热情,各个尖端公司就像一场军备竞赛,以超快的迭代更新AI的性能。目前,房地产科技中AI的主要功能和应用场景涵盖了房地产行业的多个方面,并且已经在助力投资人、开发商和业主、运营商提高效率和节省成本方面取得了成果。AI技术在房地产项目的设计和开发阶段的应用,不仅能够提高工作效率,还能提升项目的整体质量。YesPMP是专业的
- 结构化“AI视频生成提示词”Prompt,让Ai视频生成很容易!
AiBots
AiBot智能体人工智能promptaiAIGC视频
结构化“AI视频生成提示词”Prompt,让Ai视频生成很容易!由AiBot独家分享一套“AI生成视频提示词”用法!用ai做视频,去试试吧!提示词=主体(主体描述)+运动+场景(场景描述)+(镜头语言+光影+氛围)AI视频生成提示词AI视频生成提示词关注“AiBot”,后续在分享AI视频生成提示词Prompt高阶玩法。
- GitHub 趋势日报 (2025年06月23日)
qianmoQ
GitHub项目趋势日报(2025年)github
由TrendForge系统生成|https://trendforge.devlive.org/本日报中的项目描述已自动翻译为中文今日获星趋势图今日获星趋势图390suna387system-prompts-and-models-of-ai-tools383Web-Dev-For-Beginners370edit262void240SpaghettiKart180typst137ComfyUI语言分
- 【JavaScript-Day 48】告别 Ajax,拥抱现代网络请求:Fetch API 完全指南
吴师兄大模型
javascriptajax开发语言java人工智能FetchAPI大模型
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分