- 如何使用 PyTorch Lightning 保存和加载检查点
喝过期的拉菲
PyTorchLightningpytorch人工智能Lighting
【PL基础】如何保存和加载检查点1.什么是检查点(checkpoint)?2.检查点有哪些内容3.如何保存检查点4.如何加载检查点5.保存超参数6.nn.Module的检查点7.禁用checkpointing8.恢复训练状态1.什么是检查点(checkpoint)? 当模型进行训练时,性能会随着它继续看到更多数据而发生变化。最佳实践是在整个训练过程中保存模型的状态。这将在模型开发过程中的每个关键
- 转行大模型之从大数据到AI:我为何选择投身大模型领域
程序员辣条
大数据人工智能产品经理大模型教程大模型入门大模型学习
作为一名经验丰富的大数据开发工程师,我最近决定扩展自己的职业方向,转向大模型应用开发。这个决定源于对技术趋势的观察、对个人发展的思考,以及对我们行业未来的预判。让我从一个大数据工程师的视角,逐步分析这个决定背后的逻辑。目录1.技术演进:从大数据到大模型1.1大数据技术的发展现状1.2AI与大数据的融合1.3大模型:AI与大数据的集大成者2.技能迁移:大数据到大模型的自然过渡2.1数据处理能力的价值
- 大模型私有化部署的系统性挑战与解决方案:企业视角的深度解析
慌ZHANG
人工智能人工智能
个人主页:慌ZHANG-CSDN博客期待您的关注一、引言:企业为何需要私有部署大模型?随着ChatGPT、Claude、DeepSeek、通义千问等大语言模型(LLMs)能力爆发,企业纷纷探索“AI+业务”的融合创新。然而,由于数据隐私、定制需求、合规政策等多重因素,私有化部署成为多数企业采用LLM的首选路径。企业选择私有部署大模型,通常基于以下几个原因:数据安全需求:业务数据敏感,禁止外发;可控
- 【实战派×学院派】30|用户反馈五花八门,优先级怎么排?
郭菁菁
(BA/PM)实战派常踩的坑学院派如何补上大数据BA业务分析需求分析
学院派:用反馈分类体系+Impact-Effort矩阵+路线图对齐机制,让反馈不再靠吵架决定优先级你是不是也遇到过这种场景:“这个问题好多用户在群里抱怨了,能不能先修?”“销售说几个大客户提了建议,最好赶紧做。”“我们自己用着不顺,也想优化下。”结果:反馈源源不断,但每次排优先级时就是:谁声音大、谁能找到领导,谁的需求就往前排。✅实战派常见误区:靠“印象流”排优先级实战派习惯做法潜在问题结果谁催得
- 在laravel中隐性路由模型绑定』
name('users.show');上面路由部分讲过,在使用资源路由Route::resource('users','UsersController');时,默认已经包含了上面的声明。2).控制器方法传参中必须包含对应的Eloquent模型类型提示,并且是有序的:publicfunctionshow(User$user){returnview('users.show',compact('user
- Laravel路由模型绑定
Laravel路由模型绑定路由模型绑定我们在使用路由的时候一个很常见的使用场景就是根据资源ID查询资源信息:Route::get('task/{id}',function($id){$task=\App\Models\Task::findOrFail($id);});Laravel提供了一个「路由模型绑定」功能来简化上述代码编写,通过路由模型绑定,我们只需要定义一个特殊约定的参数名(比如{task
- 中文语境下的视频生成革命:百度 MuseSteamer 的“产品级落地”启示录
在美的苦命程序员
百度人工智能
在大模型发展逐步迈入多模态融合的时代,生成式视频(AIGCVideo)无疑被视为AI应用皇冠上的明珠。尤其在Sora带动“秒出大片”浪潮之后,行业期待的是下一阶段的拐点——技术从“能生成”迈向“能使用”。7月初,百度推出了MuseSteamer视频生成模型及其配套平台“绘想”,在喧嚣的AI视频赛道中选择了极其务实的一条路——场景定制化,并将这一策略高度产品化执行,体现出国内大厂在“AI商用路径”上
- Laravel路由模型绑定:简化依赖注入的艺术
2401_85742452
laravelandroidphp
Laravel路由模型绑定:简化依赖注入的艺术引言在现代Web应用开发中,Laravel框架以其优雅和简洁的代码而闻名。Laravel的路由模型绑定(RouteModelBinding)是框架提供的一项强大功能,它允许开发者在路由处理中自动注入模型实例,从而简化控制器的依赖注入过程。本文将深入探讨路由模型绑定的概念、优势以及如何在实际项目中应用这一技术。路由模型绑定简介路由模型绑定是一种在Lara
- mlflow案例
以下内容主要是翻译mlflow官方文档的一个教程。4.教程和示例4.1训练、服务和评估线性回归模型地址:Tutorial—MLflow2.4.1documentation本教程展示了如何使用MLflow端到端执行以下操作:(1)训练线性回归模型(2)将训练模型的代码打包为可重复使用和可复制的模型格式(3)将模型部署到一个简单的HTTP服务器中,使您能够对预测进行评分本教程使用的数据集将根据葡萄酒的
- pythonflow_MLflow系列1:MLflow入门教程(Python)
weixin_39872334
pythonflow
这篇教程展示了如何:训练一个线性回归模型将训练代码打包成一个可复用可复现的模型格式将模型部署成一个简单的HTTP服务用于进行预测这篇教程使用的数据来自UCI的红酒质量数据集,主要用于根据红酒的PH值,酸度,残糖量等指标来评估红酒的质量。我们会用到什么?安装MLflow和scikit-learn,推荐两种安装方式:安装MLflow及其依赖:pipinstallmlflow[extras]分别安装ML
- 要完成使用MLflow比较模型运行、选择模型并将其部署到REST API的教程
大霸王龙
python人工智能python机器学习mlflow
要完成使用MLflow比较模型运行、选择模型并将其部署到RESTAPI的教程,请按照以下有序步骤操作:设置环境导出MLflow跟踪URI:设置环境变量以指向您的MLflow跟踪服务。exportMLFLOW_TRACKING_URI=your-organization's-MLflow-server-url加载数据和预处理读取数据集:使用pandas读取包含数据集的CSV文件。importpand
- LangChain检索器的核心功能与查询逻辑源码级分析(81)
Android 小码蜂
LangChain框架入门langchain人工智能深度学习
LangChain检索器的核心功能与查询逻辑源码级分析I.检索器在LangChain中的定位与作用1.1检索器的核心价值在LangChain框架中,检索器(Retriever)承担着从海量数据中快速定位相关信息的关键角色。其核心价值在于将用户输入与知识库中的内容进行匹配,为语言模型的推理提供上下文支持。例如,在问答系统中,检索器会根据用户提问从文档库中筛选出最相关的段落,避免语言模型因缺乏背景信息
- !LangChain链的并行执行与异步处理深度解析(32)
Android 小码蜂
测试专栏langchain
LangChain链的并行执行与异步处理深度解析一、LangChain链的基础概念与执行逻辑1.1LangChain链的定义与作用LangChain链(Chain)是LangChain框架的核心组件之一,它通过将多个组件(如提示模板、大语言模型、输出解析器等)串联起来,形成一个完整的处理流程,以实现特定的自然语言处理任务。例如,在问答系统中,链可以先使用提示模板构建问题,然后调用大语言模型生成回答
- ElasticCTR:一键部署的分布式CTR预估解决方案
萧桔格Wilbur
ElasticCTR:一键部署的分布式CTR预估解决方案ElasticCTRElasticCTR,即飞桨弹性计算推荐系统,是基于Kubernetes的企业级推荐系统开源解决方案。该方案融合了百度业务场景下持续打磨的高精度CTR模型、飞桨开源框架的大规模分布式训练能力、工业级稀疏参数弹性调度服务,帮助用户在Kubernetes环境中一键完成推荐系统部署,具备高性能、工业级部署、端到端体验的特点,并且
- “Redis缓存:掌握Redis常用五大数据类型“
南石.
后端#MySQL数据库进阶#Redis缓存redis笔记
目录1、Redis中String字符串1.1常用命令解释1.2原子性1.3具有原子性的常用命令1.4String数据结构2、Redis常用数据类型-List列表2.1概念2.2常用命令2.3数据结构3、Redis常用数据类型-Set集合3.1概念3.2常用命令3.3数据结构4、Redis常用数据类型-Hash哈希4.1概念4.2常用命令4.3数据结构5、Redis常用数据类型-Zset有序集合5.
- AI产品经理技术篇:AI领域常用术语解析
让我看看好学吗
人工智能产品经理机器学习深度学习学习
作为AI产品经理,深入理解人工智能领域的核心术语是高效沟通、需求定义和产品落地的关键。无论是与算法工程师协作优化模型,还是向业务方解释技术方案,准确掌握专业术语能显著提升决策效率,避免因概念混淆导致的开发偏差。本文系统梳理了模型与算法、NLP(自然语言处理)、CV(计算机视觉)、数据处理、核心评估指标等领域的核心术语,帮助产品经理快速构建AI技术认知框架。目录1.基础概念2.模型与算法3.自然语言
- CentOS系统高效部署fastGPT全攻略
挑战者666888
linux常用工具软件centospythonlinux
文章目录一、引言二、环境准备系统要求;基础依赖安装Python环境配置三、fastGPT部署流程源码获取与验证依赖库安装模型文件部署四、系统配置优化服务端口配置;安全加固措施;资源限制调整五、服务启动与管理直接启动方式系统服务化部署;日志监控方案六、验证与测试健康检查端点测试API功能测试用例压力测试方案一、引言fastGPT是一款高效、灵活的大语言模型应用框架,凭借其出色的推理速度和良好的扩展性
- 机器学习-三大SOTA Boosting算法总结和调优
小新学习屋
机器学习机器学习boosting集成学习决策树人工智能
参考书籍:《机器学习公式推导和代码实现》书籍页码:P197~205简介除了深度学习适用的文本、图像、语音、视频等非结构化数据,对于训练样本较少的结构化数据,Boosting算法仍是第一选择。XGBoost、LightGBM、CatBoost是目前经典的SOTABoosting算法算法对比维度XGBoostLightGBMCatBoos说明算法的继承性是对GBDT的改进是对XGBoost的改进是对X
- 大模型微调到底有没有技术含量?
DeepSeek-大模型系统教程
人工智能语言模型ai大模型大模型微调程序员AI大模型
今天给大家带来知乎好友@ybq的一篇回答-大模型微调到底有没有技术含量,或者说技术含量到底有多大?老生常谈的一句话吧:有没有技术含量取决于这个工作你怎么做,尤其是llm方向,上手门槛相比传统NLP变得更低了。我举一些例子吧,针对大模型微调的几个重要环节,我列举的每一种做法大概率都能完成最终目标,甚至说训出来的模型效果都没什么差别。但对个人能力成长的帮助就大不相同了。数据工作做法1:继承实验室或者同
- AIGC领域MCP模型上下文协议:推动行业数字化转型的新引擎
SuperAGI2025
AI大模型应用开发宝典AIGCai
AIGC领域MCP模型上下文协议:推动行业数字化转型的新引擎关键词:AIGC、MCP模型、上下文协议、数字化转型、人工智能、内容生成、语义理解摘要:本文深入探讨AIGC(人工智能生成内容)领域的MCP(多模态上下文感知)模型及其上下文协议,揭示其如何成为推动行业数字化转型的新引擎。我们将从基础概念出发,逐步解析MCP模型的技术原理、实现方法和应用场景,并通过实际案例展示其在各行业的创新应用。文章还
- 程序人生:技术人如何实现职业阶梯的跨越式发展
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据程序人生职场和发展ai
程序人生:技术人如何实现职业阶梯的跨越式发展关键词:职业发展、技术领导力、T型人才、职业规划、跨领域能力、持续学习、技术管理摘要:本文针对技术从业者的职业发展痛点,构建了系统化的职业阶梯跨越模型。通过解析技术人才成长的核心阶段与能力模型,结合数学量化评估体系和实战案例,提供从技术深耕到领导力跃迁的完整路径。内容涵盖能力矩阵构建、项目实战策略、跨领域知识融合、个人品牌经营等关键模块,帮助技术人突破职
- 系统架构设计师论文分享-论软件过程模型及应用
码农卿哥
系统架构设计师系统架构
我的软考历程摘要2023年2月,我所在的公司通过了研发纱线MES系统的立项,该系统为国内纱线工厂提供SAAS服务,旨在提升纱线工厂的数字化和智能化水平。我在该项目中担任架构设计师,负责该项目的架构设计工作。本文结合我在该项目中的实践,详细论述了常见的软件开发模式如瀑布模型、原型模型、螺旋模式等,本项目采用了瀑布模型和原型模型结合的方式,把项目周期分成了需求分析、系统设计、程序设计、编码实现和测试验
- Elasticsearch索引模板:自动化索引管理
搜索引擎技术
搜索引擎实战elasticsearch自动化jenkinsai
Elasticsearch索引模板:自动化索引管理关键词:Elasticsearch、索引模板、自动化管理、索引映射、索引设置、生命周期管理、数据建模摘要:本文深入解析Elasticsearch索引模板的核心原理与实践方法,通过系统化的步骤演示如何利用索引模板实现索引的自动化创建与统一管理。内容涵盖模板结构设计、映射与设置配置、动态字段处理、优先级策略、实战案例及最佳实践,帮助读者掌握高效管理大规
- 跨平台iOS上架中的四大误区与实战解决:一支非Mac团队的完整复盘
2501_91600747
httpudphttpswebsocket网络安全网络协议tcp/ip
作为一支跨平台移动开发团队,我们最近在负责一个电商工具App项目时,要将iOS版本发布到AppStore。全员日常使用Windows或Linux,只有一台云Mac用于打包,但无法大规模支持全程上架。这个过程中我们踩到了不少坑,也摸索出一套跨平台、工具组合完成iOS上架的解决方案。以下从实际遇到的四个误区说起,分享如何利用多种工具各司其职,顺利完成App提交。误区1:没有Mac无法完成iOS证书申请
- 基于昇腾910B部署Qwen3-embedding-8B模型(通过vllm 推理引擎部署)
萌新--加油
embedding人工智能经验分享
目前基于知识库搭建,会涉及到embedding和rerank模型,目前阿里通义千问Qwen3-embedding-8B模型在网上测评效果还不错,本文基于vllm部署Qwen3-embedding-8B模型,使用的国产化算力910B2-64G单卡资源。1、环境要求:软件支持版本CANN>=8.1.RC1torch-npu>=2.5.1torch>=2.5.1Python>=3.9,<3.122、to
- Qwen3 Embedding 结构-加载-训练 看透模型设计哲学
看透一个顶级AI句向量模型的设计秘密,从文件结构到加载原理,再到其背后的训练哲学。1Qwen3-Embedding模型结构拆解说明:目录包含了运行一个基于Transformer的句向量模型所需的所有组件文件类别核心文件作用核心模型model.safetensors,config.jsonmodel.safetensors存储了模型所有训练好的权重分词器tokenizer.json,vocab.js
- containerd
一、理论Containerd是容器底层运行时,c/s架构。docker运行需要containerd作为容器底层运行时。kubernetes1.24版本之前(不包含1.24版本)支持docker、containerd等容器底层运行时,1.24版本之后(包含1.24版本)默认容器底层运行时就是containerd。containerd由storage、metadata、runtimes三大组件组成st
- 领域驱动设计(Domain-Driven Design DDD)——模型驱动设计的构造块1
阿波罗.2012
软件架构系统架构架构设计模式软件构建
一、概述为了保证软件实现简洁且与模型保持一致,不管实际情况如何复杂,必须运用建模和设计的最佳实践,即设计模式GoF等。领域驱动设计能够使模型和程序紧密结合一起,互相促进对方的效用。这种结合要求我们注意每个设计的细节。这种设计风格沿续了“职责驱动设计”的原则,也用利了其他面向对象的设计原则如“SOLID”原则等为了使领域驱动设计过程更加灵活,开发人员需理解上述原则是如何支持Model-DrivenD
- LLM归因的几种评估方式
liliangcsdn
深度学习人工智能语言模型算法
参考ASurveyofLargeLanguageModelsAttribution,LLM归因有以下几种有效的评估方式。1人工评估归因错误的检测难度大,所以评估主要依赖人工评价进行归因检测。人工评估虽然精度高,但成本高也耗时。标注过程中还需要标注员谨慎对待,而且需要手工验证。为提高可靠性,针对一个(问题,答案,归因文本),可能需要多个标注员同时进行标注,只有大部分人认为正确归因,该(问题,答案,归
- LLM归因的限制和挑战
LLM归因虽然能提升任务性能和模型的可解释性,但面临多个方面的限制。参考ASurveyofLargeLanguageModelsAttribution,LLM归因的限制和挑战总结如下1)难以确定何时以及如何进行归因LLM区分一般知识(可能不需要引文)和专业知识(需要归因)是一项微妙的任务,难以达成一致。2)归因的准确性无法得到保证LLM可能会将生成的答案和不相关或错误的来源关联起来,这种错误归因可
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla