- 如何将大视频文件从 iPhone 传输到 PC?
Coolmuster
iPhoneiOS苹果手机iphoneios
假设您的iPhone充满了大视频文件(超过1GB),这可能会迅速消耗存储空间并导致设备运行缓慢。幸运的是,您可以将这些大型视频文件从iPhone传输到PC,以释放存储空间或在上传到社交媒体之前进行编辑。方式1:如何通过专业工具将iPhone中的大视频传输到电脑CoolmusteriOSAssistant是一款多功能且用户友好的软件,旨在促进从计算机高效管理iOS设备。它提供了一系列功能来简化iOS
- 《算法备案全攻略:规范与流程引领数字时代新秩序》
算法及大模型备案顾问刘老师
算法备案深度学习AIGC语言模型算法人工智能
一、算法备案:开启合规新征程(一)备案规定的起源与发展2022年国家互联网信息办公室、工业和信息化部、公安部、国家市场监督管理总局联合发布《互联网信息服务算法推荐管理规定》,自2022年3月1日起施行。此后,相关规定不断完善和演进。如国家网信办于2022年8月、10月及2023年1月先后三次公布了《境内互联网信息服务算法备案清单》。同时,2022年发布的最高人民法院《关于规范和加强人工智能司法应用
- 万物智联时代启航:鸿蒙OS重塑全场景开发新生态
黑巧克力可减脂
鸿蒙开发鸿蒙系统
目录HarmonyOS简介:分布式操作系统,开启万物智联新时代HarmonyOS发展历程:从破局到引领核心特性:分布式技术三支柱应用场景:全场景覆盖的鸿蒙生态什么选择鸿蒙开发?技术红利与市场蓝海结语:拥抱鸿蒙,赢在万物智联起点HarmonyOS简介:分布式操作系统,开启万物智联新时代什么是鸿蒙?HarmonyOS(鸿蒙操作系统)是华为自主研发的面向全场景的分布式操作系统,其核心使命是打破设备孤岛,
- 谈谈这两年来,HCIE数通认证通过率不升反降?
博睿谷IT99_
华为职业规划职场发展
粉丝灵魂发问:"不是说技术越成熟通过率越高吗?为啥2025年考HCIE数通比前两年还难?"数据来说真话:2023年全球平均通过率约50%→2025年骤降至20%-30%一、通过率不升反降的三大硬核原因1.考试内容迭代速度碾压考生学习速度(1)技术栈暴增1)新增SDN控制器(iMasterNCE)配置2)强制考察Python网络自动化脚本(NetConf/YANG模型实战)3)强化SRv6、IPv6
- 稀土-高分子复合材料:新一代功能材料的突破
DeepCeLa
稀土稀土科技磷酸镧
稀土元素(镧系及钪、钇)凭借其特殊的4f电子构型,在高分子材料改性中展现出独特价值。通过配位键合、物理掺杂或纳米复合等技术,稀土与聚合物基体结合可显著提升材料综合性能,并赋予多种特殊功能。一、核心优势稳定性升级:稀土离子(如Ce³⁺/Ce⁴⁺)通过捕获自由基和紫外光子,使材料热分解温度提升30-50℃,紫外耐受性提高5-8倍,适用于极端环境下的工程塑料。力学强化:稀土配合物可诱导聚合物结晶度提升,
- 强化学习之 DQN、Double DQN、PPO
JNU freshman
强化学习强化学习
文章目录通俗理解DQNDoubleDQNPPO结合公式理解通俗理解DQN一个简单的比喻和分步解释来理解DQN(DeepQ-Network,深度Q网络),就像教小朋友学打游戏一样:先理解基础概念:Q学习(Q-Learning)想象你在教一只小狗玩电子游戏(比如打砖块)。小狗每做一个动作(比如“向左移动”或“发射球”),游戏会给出一个奖励(比如得分增加)或惩罚(比如球掉了)。小狗的目标是通过不断尝试,
- 如何通过YashanDB数据库强化数据安全管理
数据库
引言随着信息技术的不断发展,数据安全管理的问题逐渐显现出其重要性。对于数据库系统来说,安全性不仅仅是防止外部攻击,也包括对内部数据的保护。诸如不当的数据访问、数据泄露以及数据篡改等问题,成为了企业面临的严峻挑战。为此,合理的安全管理制度、控制措施以及规范的数据处理流程变得尤为重要。YashanDB数据库凭借其多层次的安全机制,能够有效地满足用户对于数据安全的需求。本文将详细探讨如何通过Yashan
- Altair HyperWorks教程:来了解HyperWorks的耦合求解功能
AltairEngineering,Inc.是世界领先的工程设计技术开发者,同时,也是一家具有全球深厚工程技术底蕴的优秀CAE工程咨询公司。Altair公司在CAE建模、有限元分析、可视化、结构优化和过程自动化等领域的软件产品始终站在技术的最前沿,为全球客户提供最先进的产品工程解决方案,引领工程技术的世界潮流。HyperWorks的耦合求解功能HyperWorks具有丰富的多物理场耦合求解能力,包
- 掌握LLM工程课,让你的AI之旅充满惊喜
掌控AI时代的密码:深入LLM工程课程在人工智能迅猛发展的今天,对大语言模型(LLM)的深入理解和应用能力已经成为引领技术潮流的重要基石。为了帮助更多人掌握这项核心技术,特此分享关于LLM工程的一项出色在线课程。这门课程引导您通过一段为期八周的旅程,掌握AI及大语言模型的精髓,从而达到熟练应用的水平。探索LLM的世界课程以项目为驱动,通过循序渐进的学习模块,帮助您在LLM的世界中行稳致远。每周的内
- 微服务架构下的自动化测试策略调优经验分享
微服务架构下,自动化测试策略需针对分布式特性、服务自治性和高耦合风险进行针对性调整的关键调整方向及实施方法:一、测试策略重构:分层与契约驱动1.测试金字塔升级为钻石模型调整逻辑:传统金字塔中UI测试占比过高,而微服务需强化契约测试与组件测试,形成“钻石形”结构(契约测试占比20%-30%)。实施要点:契约测试层:通过消费者驱动契约(CDC)验证服务间API兼容性,使用Pact框架自动生成测试用例,
- Python 强化学习算法实用指南(三)
绝不原创的飞龙
默认分类默认分类
原文:annas-archive.org/md5/e3819a6747796b03b9288831f4e2b00c译者:飞龙协议:CCBY-NC-SA4.0第十一章:理解黑盒优化算法在前几章中,我们研究了强化学习(RL)算法,从基于价值的方法到基于策略的方法,以及从无模型方法到基于模型的方法。在本章中,我们将提供另一种解决序列任务的方法,那就是使用一类黑盒算法——进化算法(EA)。EAs由进化机制
- Python 强化学习算法实用指南(二)
原文:annas-archive.org/md5/e3819a6747796b03b9288831f4e2b00c译者:飞龙协议:CCBY-NC-SA4.0第六章:学习随机优化与PG优化到目前为止,我们已经探讨并开发了基于价值的强化学习算法。这些算法通过学习一个价值函数来找到一个好的策略。尽管它们表现良好,但它们的应用受限于一些内在的限制。在本章中,我们将介绍一类新的算法——策略梯度方法,它们通过
- CDO 三阶认证”是基于专知智库《首席数据官3.0转型框架》设计的分级能力认证体系,旨在通过“初级-中级-高级”三阶段评估,系统衡量首席数据官(CDO)的能力成熟度,推动其从“基础执行”到“战略引领
人形机器人专利池研究中心
首席数据官3.0数据场景架构师数据场景生态首席数据官3.0数据零件架构师数据场景架构师
“CDO三阶认证”是基于专知智库《首席数据官3.0转型框架》设计的分级能力认证体系,旨在通过“初级-中级-高级”三阶段评估,系统化衡量首席数据官(CDO)的能力成熟度,推动其从“基础执行”到“战略引领”的跃迁。以下从设计逻辑、阶段划分、评估标准、核心价值四方面展开说明:一、设计逻辑:基于“能力-指数”双轨模型的分级认证CDO三阶认证的核心是“能力重塑”与“指数增长”的双轨驱动,紧密贴合白皮书提出的
- 标准引领|美创参编两项国家标准正式发布!
安全发展标准先行近日,国家标准化领域传来喜讯!杭州美创科技股份有限公司深度参与编制的两项国家标准,于2025年6月30日正式发布,并将于2026年1月1日起正式实施。GB/T20988-2025《网络安全技术信息系统灾难恢复规范》GB/T45909-2025《网络安全技术数字水印技术实现指南》GB/T20988-2025《网络安全技术信息系统灾难恢复规范》GB/T20988-2025《网络安全技术
- 【论文阅读】AdaCtrl: Towards Adaptive and Controllable Reasoning via Difficulty-Aware Budgeting
quintus0505
LLM论文阅读语言模型
AdaCtrl:TowardsAdaptiveandControllableReasoningviaDifficulty-AwareBudgeting3Method3.1长度触发标签作为控制接口(Length-TriggerTagsasControllingInterface)3.2冷启动微调(Cold-startfine-tuning)3.3难度感知的强化学习框架(Difficulty-awar
- 【免费下载】 源网荷储一体化项目:引领零碳未来,赋能智慧园区
咎歆珍Ingrid
源网荷储一体化项目:引领零碳未来,赋能智慧园区【下载地址】源网荷储一体化项目规划报告下载分享源网荷储一体化项目规划报告下载项目地址:https://gitcode.com/Open-source-documentation-tutorial/28e74项目介绍在当前全球能源转型的大背景下,“源网荷储”一体化项目应运而生,成为推动可再生能源高效利用和智慧园区建设的重要抓手。本项目提供了一份详尽的规划
- 【论文阅读】Transfer Learning for Automatic Modulation Recognition Using a Few Modulated Signal Samples
摘要:这封信提出了一种用于自动调制识别(AMR)的迁移学习模型,该模型仅具有少量调制信号样本。传输模型以音频信号UrbanSound8K作为源域进行训练,然后以一些调制信号样本为目标域进行微调。为了提高分类性能,信噪比(SNR)被用作一个功能来促进信号的分类。仿真结果表明,迁移模型在分类精度方面具有显著优势。这篇文章的核心内容是提出了一种基于迁移学习(TransferLearning)的自动调制识
- 微算法科技从量子比特到多级系统,Qudits技术革新引领量子计算新时代
MicroTech2025
量子计算
在量子计算领域,量子比特(qubit)一直是研究和应用的核心。然而,随着量子计算的不断发展和对更大规模、更高效率计算的需求增加,研究者开始探索基于多级量子系统(即qudits)的方法。Qudits,相较于传统的二级量子比特,能够在更广泛的量子态空间内编码信息,具有更高的计算能力和更高的处理效率,成为当前量子计算技术研究的一个热门方向。微算法科技(NASDAQ:MLGO)这一领域取得了突破性进展,开
- 【论文笔记ing】Pointerformer: Deep Reinforced Multi-Pointer Transformer for the Traveling Salesman Problem
Booksort
online笔记论文论文阅读transformer深度学习
论文中使用一个PointerFormer模型编码器部分:可逆残差模型堆叠解码器部分:指针网络自回归对于一次任务而言,推理阶段:编码器部分:一次解码器部分:循环N次,直至任务结束在训练阶段,使用强化学习,对于一个N个节点的TSP实例,算法中会以不同的起点,跑N次,得到N个轨迹,以满足TSP的对称特性,表示这都是属于一个TSP问题的(真实)解然后会计算这样表示归一化奖励,得到一个advantage,然
- 四、Actor-Critic Methods
沈夢昂志
DRL深度强化学习python深度学习
由于在看DRL论文中,很多公式都很难理解。因此最近在学习DRL的基本内容。再此说明,非常推荐B站“王树森老师的DRL强化学习”本文的图表及内容,都是基于王老师课程的后自行理解整理出的内容。目录A.书接上回1、Reinforce算法B.State-ValueFunctionC.PolicyNetWork(Actor)D.ActionValueNetwork(Critic)E.TraintheNeur
- 在教育领域中,如何通过用户ID跑马灯来对视频进行加密?
菜包eo
音视频容器同态加密
文章目录前言一、什么是用户跑马灯二、用代码如何实现用户ID跑马灯的功能三、如何通过用户ID跑马灯来对视频进行加密?总结前言在教育领域,优质视频课程易遭非法传播。为强化版权保护与责任追溯,引入基于用户ID的跑马灯水印技术成为有效手段。该技术将唯一用户标识动态叠加于视频画面,显著增加盗录难度,并在泄密时可精准溯源,有力保障教学资源安全与知识产权。一、什么是用户跑马灯将用户I的ID、电话号码或其他信息内
- 语言模型 RLHF 实践指南(一):策略网络、价值网络与 PPO 损失函数
在使用ProximalPolicyOptimization(PPO)对语言模型进行强化学习微调(如RLHF)时,大家经常会问:策略网络的动作概率是怎么来的?价值网络的得分是如何计算的?奖励从哪里来?损失函数怎么构建?微调后的旧轨迹还能用吗?这篇文章将以语言模型强化学习微调为例,结合实际实现和数学公式,深入解析PPO的关键计算流程。1️⃣策略网络:如何计算动作概率?策略网络πθ(a∣s)\pi_\t
- 【AI大模型前沿】OmniAudio:阿里通义实验室的空间音频生成模型,开启沉浸式体验新时代
寻道AI小兵
AI大模型-前沿技术追踪人工智能音视频开源AIGC语言模型
系列篇章No.文章1【AI大模型前沿】深度剖析瑞智病理大模型RuiPath:如何革新癌症病理诊断技术2【AI大模型前沿】清华大学CLAMP-3:多模态技术引领音乐检索新潮流3【AI大模型前沿】浙大携手阿里推出HealthGPT:医学视觉语言大模型助力智能医疗新突破4【AI大模型前沿】阿里QwQ-32B:320亿参数推理大模型,性能比肩DeepSeek-R1,免费开源5【AI大模型前沿】TRELLI
- Windows 2025带来了那些与众不同的功能
Par@ish
#Windowswindowswindows2025windowsserversmbwlan
WindowsServer2025引入了多项新功能和改进,这些更新使其在性能、安全性、虚拟化、存储和网络等方面与之前的版本相比有了显著的不同。文章目录从WindowsServer2012R2就地升级蓝牙DTrace(动态追踪工具)文件压缩WLANWinGetOpenSSH安全基线基于QUIC的SMB安全证书管理SMB备用端口SMB防火墙规则强化SMB加密SMB签名远程Mailslot路由和远程访问
- KaiwuDB X 济南大数据局:构建城市级重点车辆智慧监管中枢
数据库
项目背景2022年2月14日,交通运输部联合多部门对《道路运输车辆动态监督管理办法》进行重要修订。新规突出"科技强监"理念,明确要求各级管理机构依托智能监管平台构建常态化监管机制:一方面强化对重点营运车辆的动态监测,另一方面建立事故预防预警体系。这一政策不仅为城市重点车辆监管提供了权威的政策指引,更在全国范围内掀起了监管平台智能化升级的热潮。作为城市治理的中枢部门,济南市大数据局肩负着重点车辆监管
- 区块链技术如何促进算力生态的发展?
VV- Wxiaoxwen
软件工程开源软件软件构建
区块链技术可通过优化共识机制、推动分布式算力发展、促进算力资源共享等方式,从提升效率、拓展应用场景、优化资源配置等方面促进算力生态的发展,具体如下:-优化共识机制提升算力效率:传统的工作量证明(PoW)共识机制依赖大量计算资源,能耗高且效率低。而权益证明(PoS)、委任权益证明(DPoS)等新型共识机制的出现,减少了对挖矿算力的依赖,能在保证安全性的前提下,大幅降低算力需求,提高能源利用效率,使区
- 区块链技术促进算力生态发展的具体案例
VV- Wxiaoxwen
软件工程开源软件软件构建
以下是一些区块链技术促进算力生态发展的具体案例:-Origins公链整合GPU资源:Origins公链构建于以太坊之上,致力于连接全球的GPU资源。用户可贡献节点数据及GPU资源,并根据贡献量获得原生代币奖励。它将分散的GPU资源集中,为AI研究机构和企业提供大规模、低成本的算力租赁服务,同时实现了闲置资源的货币化,还利用区块链特性确保数据安全共享与可信验证,促进了区块链与人工智能的深度融合。-百
- 融云入选「创业邦·2025 中国企业全球化新势力 100 强·引领型」
资讯
7月3日-4日,由创业邦主办的“2025DEMOWORLD企业开放式创新创投大会”在上海松江举行。作为全球领先的智能通信云服务商,融云凭借卓越的全球化实践和在“通信+AI”领域的创新探索,成功入选大会重磅发布的“2025中国企业全球化新势力100强·引领型”榜单。本次榜单评选采用内部调研回访+专家评委评审的模式,邀请来自峰瑞资本、嘉御资本、创世伙伴创投等头部机构的10位专家评委,根据专家评委的综合
- 微软智能语音平台赋能理想汽车:创新驱动,引领智能出行新体验
在新能源汽车与智能网联技术蓬勃发展的今天,汽车行业的创新已不再局限于动力系统与车身设计,智能化、人性化的交互体验正成为新的竞争焦点。作为中国造车新势力的佼佼者,理想汽车凭借其首款量产车型理想ONE,不仅在市场上取得了辉煌成绩,更通过与微软工业级智能语音平台的深度合作,重新定义了车载语音交互的标准,为全球汽车行业树立了智能化转型的典范。理想ONE:以家庭为核心,打造智能出行新标杆理想ONE作为理想汽
- 【C语言】学习过程教训与经验杂谈:思想准备、知识回顾(五)
个人主页:艾莉丝努力练剑❄专栏传送门:《C语言》、《数据结构与算法》、C语言刷题12天IO强训、LeetCode代码强化刷题学习方向:C/C++方向⭐️人生格言:为天地立心,为生民立命,为往圣继绝学,为万世开太平前言:我们在学习过程中会碰到很多很多问题,本系列文章不会博主不会额外再创建一个新的专栏来收录,因为这一系列文章创作的初心主要是针对回顾知识点(遵循遗忘曲线并且根据自身的实际情况可以做出一些
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,