- BAAI/BGE-VL多模态模型部署、原理、代码详解(实现图像文本混合检索),包含BEG-VL多模态模型的本地部署详细步骤及代码原理解析
令令小宁
python语言模型自然语言处理nlp人工智能
本文包含BGE-VL多模态模型的本地部署详细步骤及代码原理解析文章目录前言一、模型下载二、计算流程解析1.BGE-VL-base/Large2.BGE-VL-MLLM-s1/s2三、总结前言提示:这里可以添加本文要记录的大概内容:包含四个模型及数据集,数据集未开源,四个模型可以分别下载:其中,BGE-VL-base/Large是基于CLIP训练的模型,BGE-VL-MLLM-S1/S2是基于LLM
- 本地部署Jina-CLIP v2:多语言多模态文本图像向量模型(包含一些踩坑记录和技巧)
令令小宁
jina语言模型python
JinaCLIPv2:Jina-CLIP-v2是一个全新的通用多语言多模态向量模型,该模型基于jina-clip-v1和jina-embeddings-3构建,实现了一些关键改进。关于Jina-CLIP-v2的更多介绍点此可了解模型特点模型开源链接:https://huggingface.co/jinaai/jina-clip-v2在它的开源链接的介绍中,我们可以得知,Jina-CLIP-v2的参
- python lambda函数计算三次幂_pythonlambda函数及三个常用的高阶函数
进行编程时,一般我们会给一个函数或者变量起一个名字,该名称是用于引用或寻址函数变量。但是有一个低调的函数,你不需要赋予它名字,因此该函数也叫匿名函数。该函数就是Python中的Lambda函数,下面就来为大家解析python—lambda函数,三个常用的高阶函数。为什么要使用PythonLambda函数?匿名函数可以在程序中任何需要的地方使用,但是这个函数只能使用一次,即一次性的。因此Python
- python有哪些函数怎么用_必须掌握的常用python函数有哪些?
必须掌握的常用python函数有哪些?更新时间:2020年11月02日作者:spoto必须掌握的常用Python的安装设置过程中需要注意的事项,今天我们就另一个学员们经常询问的问题进行解答。我们都知道Python有许多函数,但是因为数量庞大,难以全部掌握,所以今天我们帮助大家删繁就简,下面罗列了大家在学习过程中必须掌握的一些常用Python函数及其用途功能,希望大家认真学习,熟练应用。1.prin
- [精选] 2025最新MySQL和PostgreSQL区别、迁移、安全、适用场景全解析
猫头虎
数据库技术专区#MySQL专栏#PostgreSQL专栏mysqlpostgresql安全运维云原生数据库容器
[精选]2025最新MySQL和PostgreSQL区别、迁移、安全、适用场景全解析在当前的数据库技术领域,MySQL和PostgreSQL作为两大主流数据库,拥有各自独特的优势和应用场景。随着技术的不断演进,特别是2025年的最新动态和趋势,两者在功能、迁移、性能、安全性等方面都有了一定的变化和优化。因此,本文将通过详细的对比和分析,帮助初学者更好地理解这两种数据库,帮助你做出选择,或者顺利进行
- 从 TCP/IP 协议栈角度深入分析网络文件系统 (NFS)
一、引言:NFS与TCP/IP的关系概述网络文件系统(NetworkFileSystem,NFS)是一种分布式文件系统协议,允许客户端通过网络访问远程服务器上的文件系统,就像访问本地文件系统一样。NFS是SunMicrosystems在20世纪80年代开发的,旨在提供一种透明的、与平台无关的文件共享机制。从设计理念来看,NFS的核心目标是"消除本地文件和远程文件之间的区别",使用户能够像操作本地文
- mbuf 全面分析:从概念到应用的深度解析
一、mbuf基础概念与原理1.1mbuf的定义与基本原理mbuf(memorybuffer,内存缓冲区)是一种高效的内存管理机制,主要用于存储和处理网络数据包及其他需要临时存储的数据。它最初由BSD(BerkeleySoftwareDistribution)操作系统引入,并在后续的网络处理框架中得到广泛应用,特别是在高性能网络数据处理领域,如DPDK(DataPlaneDevelopmentKit
- AutoGen行业应用与典型场景实践
摘要AutoGen作为分布式多智能体AI系统,已在金融、医疗、教育、智能客服等行业落地应用。本文系统梳理AutoGen在各行业的应用模式、业务流程、Python实战、最佳实践与常见问题,助力中国AI开发者高效构建行业级AI解决方案。1.AutoGen行业应用全景与价值支持多智能体协作,适配复杂业务流程易于集成主流大模型与行业工具分布式部署,满足高可用与弹性扩展需求典型行业:金融风控、医疗问答、教育
- Deep Global Registration 代码环境配置(rtx3090+python3.8+cuda11.1+pytorch1.7+MinkowskiEngine0.5.1)
JPy646
pytorch深度学习神经网络
前言踩过的坑:因为rtx3090最低算力是8.6,似乎不支持过低版本的cuda。试过pytorch1.7.0+cuda11.0,但会报错,由于cuda11.0支持的最高算力达不到rtx最低的要求。但配置pytorch1.8时DGR的代码运行时会报错。对于没有这个烦恼的还是推荐安装python3.6+cuda10.2+pytorch1.6+MinkowskiEngine0.4.3,这个配置无需改动代
- 从 Alpha 到 Final:Python 各阶段版本到底该怎么用?
三金C_C
Pythonpython版本生命周期
主流的Python是由PythonSoftwareFoundation(PSF,Python软件基金会)主导的:PSF是一个非营利组织负责维护Python官方语言规范、标准库、社区基础设施它主导的实现版本是我们日常使用的:CPythonPython的版本阶段(版本周期)。这些阶段是官方正式定义的,适用于每一个Python主版本(比如3.12、3.13、3.14…)Python版本的四大阶段Pyth
- AI 大模型重塑软件开发流程的四点观察:跃迁/重构/变革/挑战
敖行客 Allthinker
Thinker说人工智能大模型
作为软件开发的从业者,笔者深刻感受到AI大模型对开发流程的颠覆性影响。从最初的代码补全工具到如今能够自主完成复杂任务的智能协作者,AI的角色转变正推动软件开发范式发生系统性变革。基于实际开发经验与行业案例,从四个维度,浅显讲述一下AI大模型重塑软件开发流程的观察。观察一:编码能力突破——从“助手”到“协作者”的技术跃迁核心变化:AI从“补全代码片段”进化为“自主构建完整系统”过去,AI在开发中的角
- RTX50系显卡+CUDA+torch+python对应关系
前言本人的显卡是RTX5070,使用时发现它对CUDA、torch和python版本有要求,试图按照老项目的依赖文件进行安装发现安不了,因此记录一下(截至2025年6月)。提示:以下是本篇文章正文内容,下面案例可供参考一、RTX50系显卡只能使用CUDA12.8二、目前只支持torch2.7.0和2.7.11.去pytorch官网的https://download.pytorch.org/whl/
- go channel用法
三金C_C
gogolangchannel
介绍channel在Go中是一种专门用来在goroutine之间传递数据的类型安全的管道。你可以把它理解成:多个goroutine之间的**“传话筒”**,谁往通道里塞东西,另一个goroutine就能接收到。Go语言采用CSP(CommunicatingSequentialProcesses)模型,也就是鼓励:“不要通过共享内存来通信,而要通过通信来共享内存”也就是通过channel来传递数据,
- 揭开 MCP 的神秘面纱:标准化 AI 上下文管理的未来(上)
愤怒的可乐
大模型自然语言处理人工智能python开发语言
引言最近MCP大火,本文尝试揭开它神秘的面纱。文章较长,分为上下两篇。架构MCP协议遵循客户端-主机-服务器架构,其中一个主机应用运行多个客户端实例,每个客户端实例维护了和服务器建立的独立的连接。Host:希望通过MCP访问数据的程序,比如一个聊天应用程序。Client:与服务器保持1:1连接(会话)的客户端,Host通过这个Client连接不同的Server提供的功能。Server:通过MCP公
- 强化学习贝尔曼方程推导
愤怒的可乐
强化学习人工智能概率论机器学习算法
引言强化学习中贝尔曼方程的重要性就不说了,本文利用高中生都能看懂的数学知识推导贝尔曼方程。回报折扣回报GtG_tGt的定义为:Gt=Rt+1+γRt+2+γ2Rt+3+⋯=∑k=0∞γkRt+k+1(1)G_t=R_{t+1}+\gammaR_{t+2}+\gamma^2R_{t+3}+\cdots=\sum_{k=0}^\infty\gamma^kR_{t+k+1}\tag1Gt=Rt+1+γR
- Llama改进之——RoPE旋转位置编码
愤怒的可乐
NLP项目实战#LLaMARoPE旋转位置编码
引言旋转位置编码(RotaryPositionEmbedding,RoPE)将绝对相对位置依赖纳入自注意力机制中,以增强Transformer架构的性能。目前很火的大模型LLaMA、QWen等都应用了旋转位置编码。之前在[论文笔记]ROFORMER中对旋转位置编码的原始论文进行了解析,重点推导了旋转位置编码的公式,本文侧重实现,同时尽量简化数学上的推理,详细推理可见最后的参考文章。复数与极坐标复数
- Llama改进之——分组查询注意力
愤怒的可乐
#NLP项目实战自然语言处理llama深度学习人工智能分组查询注意力旋转位置编码
引言今天介绍LLAMA2模型引入的关于注意力的改进——分组查询注意力(Grouped-queryattention,GQA)1。Transformer中的多头注意力在解码阶段来说是一个性能瓶颈。多查询注意力2通过共享单个key和value头,同时不减少query头来提升性能。多查询注意力可能导致质量下降和训练不稳定,因此常用的是分组查询注意力。然后我们结合上篇文章3探讨的旋转位置编码,将选择位置编
- Llama改进之——均方根层归一化RMSNorm
愤怒的可乐
NLP项目实战#llama
引言在学习完GPT2之后,从本文开始进入Llama模型系列。本文介绍Llama模型的改进之RMSNorm(均方根层归一化)。它是由RootMeanSquareLayerNormalization论文提出来的,可以参阅其论文笔记1。LayerNorm层归一化(LayerNorm)对Transformer等模型来说非常重要,它可以帮助稳定训练并提升模型收敛性。LayerNorm针对一个样本所有特征计算
- Llama改进之——SwiGLU激活函数
愤怒的可乐
#自然语言处理NLP项目实战llama
引言今天介绍LLAMA模型引入的关于激活函数的改进——SwiGLU1,该激活函数取得了不错的效果,得到了广泛地应用。SwiGLU是GLU的一种变体,其中包含了GLU和Swish激活函数。GLUGLU(GatedLinearUnits,门控线性单元)2引入了两个不同的线性层,其中一个首先经过sigmoid函数,其结果将和另一个线性层的输出进行逐元素相乘作为最终的输出:GLU(x,
- 从0实现llama3
讨厌编程但喜欢LLM的学院派
人工智能python开发语言深度学习机器学习pytorch
分享一下从0实现llama的过程流程如下:word-->embeddinglayer-->n*decoderlayer-->finallinearlayer-->output分词器在embedding之前,需要进行分词,将句子分成单词。llama3采用了基于BPE算法的分词器。这个链接实现了一个非常简洁的BPE分词器简易分词器实现BPE分词器(选看)1)训练tokenizer词汇表并合并给定文本,
- ATmega16微控制器编程与应用实践
love彤彤
本文还有配套的精品资源,点击获取简介:ATmega16是一个基于AVR架构的8位微控制器,广泛用于嵌入式系统控制应用。本文将详细介绍如何在ATmega16上实现1602液晶显示、独立键盘操作、数码管扫描、蜂鸣器控制和流水灯设计等常用功能。通过这些功能的实践项目,读者可以掌握C语言在嵌入式系统开发中的应用,包括I/O口编程、定时器设置、中断处理和串行通信等关键技术。1.ATmega16微控制器简介A
- 强化学习RLHF详解
贝塔西塔
强化学习大模型人工智能深度学习机器学习算法语言模型
RLHF(ReinforcementLearningfromHumanFeedback)模型详解一、背景1.传统强化学习的局限性传统的强化学习(ReinforcementLearning,RL)依赖于预定义的奖励函数(RewardFunction),但在复杂任务(如自然语言生成、机器人控制)中,设计精确的奖励函数极为困难。例如:模糊目标:生成“高质量文本”难以量化,无法用简单的指标(如BLEU、R
- 强人工智能是否会诞生于现在的AI之中
一花·一叶
人工智能语言模型
为什么我认为当前AI方法无法实现真正的人工智能?随着大模型的发展日新月异,越来越多的人开始相信我们正在接近通用人工智能(AGI)。然而,作为一名人工智能领域的算法工程师,我反而越来越确信:现有的技术路径——以Transformer为核心的深度神经网络,可能已经达到了它的能力上限。我们或许正站在一个新时代的门槛上:真正的强人工智能将不会诞生于现有的范式中,而需要一条全新的算法路径。Transform
- C++中的前置声明
mj348940862
C++c++数据结构开发语言
一般来说,当你某个文件中,需要用到某个类或者结构体的指针,但是却不能直接包含那个类或者结构体的声明文件时,可以用前置声明解决。前置声明是指对类、函数、模板或者结构体进行声明,仅仅是声明,不包含相关具体的定义。在很多场合我们可以用前置声明来代替#include语句。类的前置声明只是告诉编译器这是一个类型,但无法告知类型的大小,成员等具体内容。在未提供完整的类之前,不能定义该类的对象,也不能在内联成员
- 手把手从零打造 Llama3:解锁下一代预训练模型
会飞的Anthony
信息系统人工智能AIGC自然语言处理人工智能llama3AIGC
引言Llama3相较于Llama2,不仅在模型架构上做了显著优化,尤其是全局查询注意力机制(GQA)的引入,使得模型在大规模数据处理上表现更加出色。同时,Llama3采用了与GPT一致的tiktoken分词器,大幅提升了分词效率。本篇文章将带你从头构建Llama3预训练流程,深入了解其关键细节和实现方式,让你掌握这一下一代模型的核心技术。1.启动训练脚本在这一步中,我们将实现Llama3的预训练框
- 从零实现Llama3:深入解析Transformer架构与实现细节
祁婉菲Flora
从零实现Llama3:深入解析Transformer架构与实现细节llama3-from-scratchllama3一次实现一个矩阵乘法。项目地址:https://gitcode.com/gh_mirrors/ll/llama3-from-scratch引言本文将深入探讨如何从零开始实现Llama3语言模型。我们将从最基本的张量操作开始,逐步构建完整的Transformer架构。通过这个过程,读者
- PyTorch-Llama: 从零开始实现LLaMA 2模型教程
乔昕连
PyTorch-Llama:从零开始实现LLaMA2模型教程pytorch-llamaLLaMA2implementedfromscratchinPyTorch项目地址:https://gitcode.com/gh_mirrors/py/pytorch-llama1.项目介绍PyTorch-Llama是一个在PyTorch平台上完全从零开始实现的LLaMA2模型仓库。该模型是一个强大的自回归语言模
- Redis缓存击穿、缓存穿透、缓存雪崩(定义、产生原因、解决方案--代码示例)
卜锦元
redis数据库数据优化缓存redis数据库
前言Redis缓存作为高性能的数据访问层,在实际开发中经常面临三大经典问题:缓存击穿、缓存穿透、缓存雪崩。本文将从它们各自的定义、产生的原因、实际开发过程中的解决方案出发,为大家详细描述相关的信息,并附有相关的go代码示例(嗯…最近go写的比较多,大家也可以用其它语言带入,原理都是一样的)一、缓存穿透(CachePenetration)❓是什么?客户端频繁请求数据库中根本不存在的Key,缓存不命中
- Redis主从复制详解
卜锦元
redis高可用性数据库redis数据库linux缓存
前言本文对于redis主从复制相关知识进行详细的解释,主要从主从复制的原理、配置方式、数据流转过程、重要概念与机制、常见问题与解决方案、典型使用场景、局限性与处理方案等方面出发,帮助我们更好的理解Redis的主从复制知识。一、Redis主从复制原理(Replication)主从复制是指一个Redis主节点(Master)将数据同步到一个或多个从节点(Slave/Replica),从节点一般以只读方
- 音视频会议服务搭建(设计方案)-01
卜锦元
音视频webrtcgolang流媒体websocket音视频
前言最近在做音视频会议系统服务搭建的工作任务,因为内容过多,我会逐篇分享相关的设计方案、开发思路、编程语言、使用的组件集合等等。如果你也有大型音视频会议系统搭建架构的需求,希望这些可以对你有所帮助。EchoMeet音视频会议系统架构设计项目概述EchoMeet是基于WebRTC技术的企业级音视频会议解决方案,采用三层音视频架构和Go+Node.js双后端微服务设计,实现了高并发、低延迟、可扩展的视
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比