本论文探讨了长短时记忆网络(LSTM)和反向传播神经网络(BP)在股票价格预测中的应用。首先,我们介绍了LSTM和BP在时间序列预测中的基本原理和应用背景。通过对比分析两者的优缺点,我们选择了LSTM作为基础模型,因其能够有效处理时间序列数据中的长期依赖关系,在基础LSTM模型的基础上,我们引入了动态残差学习(dynamic skip connection)的概念,通过动态调整残差连接,提高了模型的长期记忆能力和预测准确性。实验证明,动态残差的引入在股票价格预测任务中取得了显著的改进效果。进一步地,我们探讨了堆叠式LSTM的改进方法,通过增加模型的深度来捕捉更复杂的时间序列模式。我们详细阐述了堆叠式LSTM的结构和训练过程,并通过实验证实其在股票价格预测中的优越性。结果表明,堆叠式LSTM在处理多层次的时间序列信息上具有更强的表达能力,提高了模型的泛化性能。综合而言,本论文通过对LSTM和BP在股票价格预测中的应用进行研究,进一步引入了动态残差学习和堆叠式LSTM的改进方法,提高了模型的性能和稳健性。这些方法为金融领域的时间序列预测提供了有效的工具和思路,对于投资决策和风险管理具有重要的实际意义。
Colab Notebook | Github Rep |
随着信息技术的不断发展和大数据的涌现,研究者们越来越倾向于利用高频、多维的金融数据来提升预测模型的性能。在这一趋势中,长短时记忆网络(LSTM)作为一种强大的时序建模工具,凭借其对长期依赖关系的出色捕捉能力,引起了广泛的关注。同时,动态残差学习和堆叠式LSTM等改进方法的引入进一步提高了模型的复杂性和性能。本研究在这一背景下,以中国股票市场为研究对象,旨在利用这些先进的深度学习技术,提高对系统性风险的识别和预测能力。
为了确保时间序列的稳定性,我们选择了这些具有相对较长历史的股票。我们的数据集来源于 investing.com、Yahoo Finance、Yahoo Finance等,通过网络爬虫爬取和网站直接下载的方式,获取了中国股票市场中时间较长的四只股票的日频数据。这些股票的历史数据涵盖多年,每日记录超过7000条。
在使用网络爬虫获取金融数据时,主要步骤包括选择数据源、确定数据获取的方法、编写爬虫代码、处理数据并保存。首先我们确定了要获取数据的来源,就是上面所说的几个股票网站,随后我们确定了数据获取的方法,查看数据源是否提供API接口和直接下载的链接。如果有,就可以使用API或者直接下载方式来更加方便和规范地获取数据。如果没有API,则能需要考虑使用爬虫技术从网页中提取数据。到了编写爬虫代码的步骤, 我们选择使用爬虫,于是编写代码来模拟浏览器行为,请求网页并解析HTML内容。具体使用的Python中的requests库来用于发送HTTP请求,除此之外还使用了BeautifulSoup和lxml等库用于解析所获取到HTML。最后我们进行了处理数据并保存,提取了后面再进行特征工程时所需要的信息,然后进行简单的数据清理和处理。最后,将数据保存到本地文件或数据库中。最后我们保存了四只符合条件的股票。
序号 | 记录开始时间 | 记录结束时间 | 记录条数 |
---|---|---|---|
000001 | 1991-01-29 | 2020-04-14 | 6936 |
000002 | 1991-01-29 | 2020-04-18 | 6940 |
000004 | 1991-01-14 | 2020-04-14 | 6820 |
000006 | 1992-04-27 | 2020-04-18 | 6603 |
import requests
from bs4 import BeautifulSoup
import pandas as pd
import yfinance as yf
from tiingo import TiingoClient
# 函数:爬取 investing.com 的历史股价数据
def scrape_investing(stock_code):
url = f'https://www.investing.com/equities/{stock_code}-historical-data'
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
data_table = soup.find('table', {'id': 'curr_table'})
data = pd.read_html(str(data_table))[0]
return data
# 函数:爬取 Yahoo Finance 的历史股价数据
def scrape_yahoo_finance(stock_code):
stock_data = yf.download(stock_code, start="1991-01-01")
return stock_data
# 函数:爬取 Tiingo 的历史股价数据
def scrape_tiingo(stock_code, api_key):
config = {
'session': True,
'api_key': api_key
}
client = TiingoClient(config)
stock_data = client.get_ticker_price(stock_code, fmt='json', startDate='2000-01-01')
data = pd.DataFrame(stock_data)
return data
# 函数:筛选至少有6800条记录的数据
def filter_data(data, min_records=6800):
if len(data) >= min_records:
return data
else:
return None
# 股票代码
stock_code = 'xxxx' # 示例伪代码
# 爬取数据
investing_data = scrape_investing(stock_code)
yahoo_finance_data = scrape_yahoo_finance(stock_code)
tiingo_data = scrape_tiingo(stock_code, 'TIINGO_API_KEY') # 真实的Tiingo API 密钥
# 筛选数据
investing_data = filter_data(investing_data)
yahoo_finance_data = filter_data(yahoo_finance_data)
tiingo_data = filter_data(tiingo_data)
# 清洗数据...
# 保存文件...
在数据获取的过程中,我们也遇到一些困难,有网站有反爬虫机制,它们采取反爬虫机制来防止爬虫访问。我们用设置合适的请求头,使用代理IP解决了这个问题,还有动态加载的问题, 一些网页如新三板网站(xinsanban.eastmoney.com)使用JavaScript进行动态加载数据,这样爬虫可能无法直接获取到所有的信息。解决办法是我们使用Docker部署一个splash来爬取数据。
在选股时,我们考虑了这四只股票在中国股票市场中的代表性、其历史数据的时间跨度,以及它们的交易活跃度。这种选股标准的应用旨在使我们的研究更具有代表性,能够更全面地反映中国股票市场的整体波动。
我们采用了深度学习方法,主要是长短时记忆网络(LSTM)。并且与BP神经网络进行了一个对比实验,LSTM作为一种递归神经网络,在捕捉时间序列数据中的长期依赖关系方面表现出色。通过对股票价格的历史数据进行训练,我们预期的是LSTM能够有效地建模和预测未来的价格趋势。
在基础的LSTM模型上,我们引入了动态残差学习和堆叠式LSTM的改进方法。动态残差学习旨在通过调整残差连接,提升模型的长期记忆能力。而堆叠式LSTM通过增加模型的深度,更好地捕捉时间序列中的复杂模式。这些改进方法旨在提高模型对系统性风险的识别和预测能力,使其更适用于金融领域的时间序列预测任务。
反向传播(BP)神经网络是一类人工神经网络,在机器学习和模式识别领域非常受欢迎。这些网络属于监督学习算法家族,尤其以其学习输入和输出数据之间复杂映射的能力而闻名。术语“反向传播”是指误差通过网络向后传播的训练过程,从而能够调整权重以最小化预测输出和实际输出之间的差异。
BP神经网络由输入层、一个或多个隐藏层和输出层组成。每层都包含互连的节点,每个连接都与一个权重相关联。
在前馈过程中,输入数据在网络中逐层传播,通过每个节点中的加权连接和激活函数进行转换。此过程生成网络的输出。如下公式(1),前馈的过程是通过网络传播输入以使用激活函数生成输出。
a j ( l ) = g ( z j ( l ) ) ( 1 ) a_j^{(l)} = g(z_j^{(l)}) (1) aj(l)=g(zj(l))(1)
将网络生成的输出与实际目标值进行比较,并计算误差。常见的误差函数包括均方误差 (MSE) 或交叉熵。如下公式(2),误差计算是计算预测 a k ( L ) a_k^{(L)} ak(L)和实际 y k y_k yk输出之间的差异。
E = 1 2 ∑ k ( y k − a k ( L ) ) ( 2 ) E=\frac{1}{2}\sum_{k}(y_{k}-a_{k}^{(L)})(2) E=21k∑(yk−ak(L))(2)
反向传播算法涉及权重的迭代调整以最小化误差。首先进行梯度计算(公式3)用微积分的链式法则计算误差相对于每个权重的梯度。然后更新权重(公式4),权重以梯度的相反方向更新,目的是减少误差。再引入学习率,以此来控制权重更新期间的步长。它可以防止超调或收敛问题。然后是激活函数(公式5),它向网络引入非线性,使其能够学习复杂的关系。最后训练迭代前馈和反向传播步骤重复多次迭代或历元,直到网络收敛到误差最小化的状态。
∂ E ∂ ω i j ¨ ( 1 ) = δ j ( l + 1 ) ∗ a i ( l ) ( 3 ) \frac{\partial E}{\partial\omega_{\ddot{\mathrm{ij}}}^{(1)}}=\delta_{j}^{(l+1)}*a_{i}^{(l)} (3) ∂ωij¨(1)∂E=δj(l+1)∗ai(l)(3)
ω i j ( l ) = ω i j ( l ) − α ∂ E ∂ ω i j ( l ) ( 4 ) \omega_{\mathrm{ij}}^{(l)}=\omega_{\mathrm{ij}}^{(l)}-\alpha\frac{\partial E}{\partial\omega_{ij}^{(l)}}(4) ωij(l)=ωij(l)−α∂ωij(l)∂E(4)
g ( z ) = 1 1 + e − z O R g ( z ) = max ( 0 , Z ) ( 5 ) g(z)=\dfrac{1}{1+e^{-z}}ORg(z)=\max(0,Z)(5) g(z)=1+e−z1ORg(z)=max(0,Z)(5)
长短期记忆 (LSTM) 网络是一种特殊类型的循环神经网络 (RNN),旨在克服传统 RNN 中的梯度消失问题。 LSTM 通过捕获远程依赖关系,在建模和预测顺序数据方面特别有效。由于这些网络能够长时间学习和记住信息,因此在自然语言处理、语音识别和时间序列预测中得到了广泛的应用。
LSTM 引入了贯穿整个序列的单元状态 概念,允许信息随着时间的推移而持续存在。门控制信息流入和流出细胞状态。
第一种是忘记门,用于决定应丢弃或保留细胞状态中的哪些信息。符号表示为 ( f i ) (f_i) (fi),第二种是输入门,用于确定应将哪些新信息添加到单元状态中。符号表示为 ( i t ) (i_t) (it),第三种是输出门,用于记录控制单元状态中的哪些信息应输出到序列中的下一层。符号表示为 ( o t ) (o_t) (ot)
细胞状态通过以下三种步骤来更新。一种是忘记门操作(公式6),一种是输入门操作(公式7),还有一种是细胞状态更新操作(公式8)
f t = σ ( W f ∗ [ h t − 1 , x t ] + b f ) ( 6 ) \quad f_t=\sigma({W_f}*[h_{t-1},x_t]+b_f)(6) ft=σ(Wf∗[ht−1,xt]+bf)(6)
i t = σ ( W f ∗ [ h t − 1 , x t ] + b i ) ( 7 ) i_t=\sigma(W_f*[h_{t-1},x_t]+b_i) (7) it=σ(Wf∗[ht−1,xt]+bi)(7)
C ~ = tanh ( W C ∗ [ h t − 1 , x t ] + b C ) ( 7 ) \widetilde{C}=\tanh(W_C*[h_{t-1},x_t]+b_C)(7) C =tanh(WC∗[ht−1,xt]+bC)(7)
C t = f t ∗ C t − 1 + i t ∗ C ~ t ( 8 ) C_{t}=f_{t}*C_{t-1}+i_{t}*\tilde{C}_{t}(8) Ct=ft∗Ct−1+it∗C~t(8)
隐藏状态使用输出门更新(公式9)
o t = σ ( W o ∗ [ h t − 1 , x t ] + b o ) h t = o t ∗ tanh ( C t ) ( 9 ) \begin{aligned}o_t&=\sigma(W_o*[h_{t-1},x_t]+b_o)\\h_t&=o_t*\tanh(C_t)\end{aligned} (9) otht=σ(Wo∗[ht−1,xt]+bo)=ot∗tanh(Ct)(9)
LSTM 使用随时间反向传播 (BPTT) 进行训练,其中计算损失相对于参数的梯度并用于更新权重。
堆叠式长短期记忆 (LSTM) 网络,即Stacked Long Short-Term Memory Networks是传统 LSTM 架构的扩展,旨在捕获顺序数据中更复杂和分层的模式。通过将多个 LSTM 层相互堆叠,这些网络增强了表示学习能力,从而可以对时间序列数据中复杂的依赖关系进行建模。堆叠架构能够提取分层特征,使其在时间序列预测、自然语言处理和语音识别等任务中特别有效。 它相对于传统的LSTM有顺序信息流、层次特征提取、分层结构、随时间的训练和反向传播的特点。
堆叠 LSTM 由多个 LSTM 层组成,其中每层都包含自己的一组 LSTM 单元。信息按层次结构流过这些层,使网络能够学习复杂的表示。
h t ( 1 ) = L S T M 1 ( x t , h t − 1 ( 1 ) , C t − 1 ( 1 ) ) h t ( 2 ) = L S T M 2 ( h t , h t − 1 ( 2 ) , C t − 1 ( 2 ) ) ( 10 ) \begin{aligned}h_t^{(1)}&=LSTM1(x_t,h_{t-1}^{(1)},C_{t-1}^{(1)})\\h_t^{(2)}&=LSTM2(h_t,h_{t-1}^{(2)},C_{t-1}^{(2)})\end{aligned}(10) ht(1)ht(2)=LSTM1(xt,ht−1(1),Ct−1(1))=LSTM2(ht,ht−1(2),Ct−1(2))(10)
每个 LSTM 层处理顺序输入数据,一层的输出作为堆栈中下一层的输入。这种顺序信息流使模型能够捕获不同抽象级别的依赖关系。
堆叠 LSTM 层可以提取分层特征。较低层可以捕获简单的时间模式,而较高层可以根据较低层的输出学习更抽象和复杂的表示。
与传统 LSTM 类似,堆叠 LSTM 使用 BPTT 算法进行训练。在反向传播期间通过整个堆栈计算梯度,从而允许考虑整个层次结构的权重更新。
受 ResNets 启发,动态残差 LSTM 集成了残差学习的概念。这涉及引入跳跃连接,允许网络直接学习残差映射,从而缓解梯度消失问题。
与跳跃连接是固定的传统残差网络不同,动态残差 LSTM 引入了基于输入数据的跳跃连接的可变性(公式11)。跳跃连接在训练过程中动态调整,使模型能够适应输入序列的不同复杂性。因此LSTM的单元操作也需要做出相应的更改(公式12)
s t = D y n a m i c S k i p C o n n e c t i o n ( x t , h t − 1 ) ( 11 ) s_t=DynamicSkipConnection(x_t,h_{t-1})(11) st=DynamicSkipConnection(xt,ht−1)(11)
h t = L S T M ( x t + s t , h t − 1 ( 1 ) , C t − 1 ( 1 ) ) ( 12 ) h_{t}=LSTM(x_{t}+s_{t},h_{t-1}^{(1)},C_{t-1}^{(1)}) (12) ht=LSTM(xt+st,ht−1(1),Ct−1(1))(12)
动态跳跃连接通过为梯度流提供快捷路径来增强 LSTM 处理长期依赖关系的能力。这有助于缓解反向传播过程中与梯度消失相关的问题。
动与传统 LSTM 类似,动态残差 LSTM 使用随时间反向传播 (BPTT) 进行训练。然而,动态跳跃连接的存在引入了需要在训练期间学习的额外参数。
# 传统LSTM模型
from keras.models import Sequential
from keras.layers import LSTM, Dropout, Dense
d = 0.0001
model = Sequential() # 建立层次模型
model.add(LSTM(64, input_shape=(window, feanum), return_sequences=True)) # 建立LSTM层
model.add(Dropout(d)) # 建立的遗忘层
model.add(LSTM(16, return_sequences=False)) # 建立LSTM层,不需要再次指定input_shape
model.add(Dropout(d)) # 建立的遗忘层
model.add(Dense(4, activation='relu')) # 建立全连接层,移除init参数
model.add(Dense(1, activation='relu')) # 建立全连接层,移除init参数
model.compile(loss='mse', optimizer='adam', metrics=['accuracy'])
model.fit(X_train, y_train, epochs=200, batch_size=256) # 训练模型,使用epochs代替nb_epoch
# 堆叠式LSTM模型
from keras.models import Sequential
from keras.layers import LSTM, Dropout, Dense
d = 0.0001
model_stack = Sequential() # 建立层次模型
model_stack.add(LSTM(64, input_shape=(window, feanum), return_sequences=True)) # 建立LSTM层
model_stack.add(Dropout(d)) # 建立的遗忘层
model_stack.add(LSTM(32, return_sequences=True)) # 建立LSTM层,不需要再次指定input_shape
model_stack.add(Dropout(d)) # 建立的遗忘层
model_stack.add(LSTM(16, return_sequences=False)) # 建立LSTM层,不需要再次指定input_shape
model_stack.add(Dropout(d)) # 建立的遗忘层
model_stack.add(Dense(4, activation='relu')) # 建立全连接层,移除init参数
model_stack.add(Dense(1, activation='relu')) # 建立全连接层,移除init参数
model_stack.compile(loss='mse', optimizer='adam', metrics=['accuracy'])
model_stack.fit(X_train, y_train, epochs=200, batch_size=256) # 训练模型,使用epochs代替nb_epoch
from keras.layers import LSTM, Dropout, Dense, Lambda, Layer, Input
from keras.models import Sequential
from keras import Model
from keras.layers import GlobalAveragePooling1D
import keras.backend as K
# 自定义动态残差层
class DynamicResidualLayer(Layer):
def __init__(self, **kwargs):
super(DynamicResidualLayer, self).__init__(**kwargs)
def build(self, input_shape):
super(DynamicResidualLayer, self).build(input_shape)
def call(self, inputs, **kwargs):
x, skip_connection = inputs
return K.concatenate([x, skip_connection], axis=-1)
def compute_output_shape(self, input_shape):
return input_shape[0][0], input_shape[0][1], input_shape[0][2] * 2
# 堆叠式LSTM + 动态残差模型
inputs = Input(shape=(window, feanum))
x = LSTM(64, return_sequences=True)(inputs)
x = Dropout(d)(x)
# 第一个动态残差层
skip_connection1 = LSTM(64, return_sequences=True)(x)
x = DynamicResidualLayer()([x, skip_connection1])
# 第二个动态残差层
skip_connection2 = LSTM(32, return_sequences=True)(x)
x = DynamicResidualLayer()([x, skip_connection2])
# 第三个动态残差层
skip_connection3 = LSTM(16, return_sequences=True)(x)
x = DynamicResidualLayer()([x, skip_connection3])
x = GlobalAveragePooling1D()(x)
x = Dropout(d)(x)
x = Dense(4, activation='relu')(x)
outputs = Dense(1, activation='relu')(x)
model_dynamic = Model(inputs=inputs, outputs=outputs)
model_dynamic.compile(loss='mse', optimizer='adam', metrics=['accuracy'])
model_dynamic.fit(X_train, y_train, epochs=200, batch_size=256) # 训练模型,使用epochs代替nb_epoch
模型 | MAE | MSE | 准确率 | MAPE |
---|---|---|---|---|
LSTM | 0.90 | 0.82 | 0.01 | inf |
堆叠式LSTM | 0.016 | 0.00044 | 0.43 | 1.84 |
堆叠式LSTM+动态残差 | 0.019 | 0.00071 | 0.43 | 2.16 |
模型 | MAE | MSE | 准确率 | MAPE |
---|---|---|---|---|
LSTM | 0.90 | 0.82 | 0.01 | inf |
堆叠式LSTM | 0.013 | 0.00034 | 0.43 | 1.84 |
堆叠式LSTM+动态残差 | 0.014 | 0.00038 | 0.43 | 1.63 |
在这个实验中,我们使用了三种不同的LSTM模型来预测
股票价格:传统的LSTM,堆叠式LSTM,以及堆叠式LSTM+动态残差。每种模型都有其独特的特点和优势。
如果有疑问欢迎大家留言讨论,你如果觉得这篇文章对你有帮助可以给我一个免费的赞吗?我们之间的交流是我最大的动力!