- CNN的各种知识点(五):平均精度均值(mean Average Precision, mAP)
墨绿色的摆渡人
CNN的各种知识点零碎知识点cnn均值算法目标跟踪
平均精度均值(meanAveragePrecision,mAP)1.平均精度均值(meanAveragePrecision,mAP)概念:计算步骤:具体例子:重要说明:典型值范围:总结:好的,我将分两部分详细解答您的问题:1.平均精度均值(meanAveragePrecision,mAP)概念:mAP是目标检测中最常用的评估指标,综合反映模型在不同召回率下的平均精度表现。其核心是计算每个类别的平均
- 详解:订单履约系统规划
java
大家好,我是汤师爷~什么是订单履约系统?订单履约是从消费者下单支付到收到商品的全流程管理过程,包括订单接收、订单派单、库存分配、仓储管理和物流配送等环节,核心目标是确保商品准时、准确地送达消费者手中。通过订单履约系统,消费者可以实时了解商品的物流状态和预计送达时间,并可以根据需求选择同城配送、快递或自提等多样化的履约方式。对商家而言,订单履约系统可以自动化处理订单信息,大幅降低人工操作成本。系统能
- 基于STM32的智慧农业控制系统设计:python可视化、UART、I2C、TCP/HTTP技术
极客小张
stm32pythontcp/ip单片机物联网毕业设计课程设计
1.项目选题与需求分析选题背景和动机全球农业正面临着气候变化、人口增长与资源短缺等多重挑战。传统农业生产方法难以满足现代社会对高效、可持续农业的需求。智慧农业的概念应运而生,旨在通过高科技手段提升农业生产效率、降低人力成本、提高作物质量和产量。本项目设计的智慧农业大棚系统,基于STM32C8系列微控制器,集成多种传感器与执行器,旨在实现对大棚环境的智能监控与管理。目标用户和市场需求分析目标用户包括
- 深入理解Ping/Echo与心跳检测的
一休哥助手
软考系统架构师架构网络服务器运维
一、Ping/Echo与心跳检测概述1.1什么是Ping/EchoPing是一种基于ICMP(InternetControlMessageProtocol,互联网控制消息协议)的网络诊断工具,主要用于测试网络设备之间的连通性和响应时间。它通过向目标设备发送一个ICMPEcho请求(EchoRequest),目标设备收到后会返回一个ICMPEcho应答(EchoReply),从而让发送方得知目标设备
- 软考高项笔记 数字化转型与元宇宙
人工智能
数字化转型与元宇宙随着众多信息通信新技术的迅速发展与普及应用,信息空间成长为第三空间,并与物理空间和社会空间共同构成人类社会的三元空间。数字化转型是建立在数字化转换、数字化升级基础上,进一步触及组织核心业务,以新建一种业务模式为目标的高层次转型。数字化转型是开发数字化技术及支持能力以新建一个富有活力的数字化商业模式。只有组织对其业务进行系统性、彻底的(或重大和完全的)重新定义,不仅是IT方面,而是
- 500多种目标检测数据集下载地址汇总(YOLO、VOC)
2401_85863780
目标检测YOLO目标跟踪数据集yolo
名称辣椒病害分类数据集9076张12类别.7z【目标检测数据集】光伏电池异常检测数据集VOC+YOLO格式219张2类别_2.zip【目标检测数据集】钢丝绳破损灼伤缺陷检测数据集VOC+YOLO格式1318张2类别.7z【目标检测数据集】狗狗数据集5912张VOC+YOLO格式.zip【目标检测数据集】工地安全帽佩戴检测4000张VOC+YOLO格式.rar【目标检测数据集】手势识别0-9数字VO
- 2024年开源数据集地址汇总包含最新最全数据集在这你可以找到任何想要数据集
萌萌哒240
深度学习目标跟踪人工智能计算机视觉
目标检测数据集和图像分类数据集是计算机视觉领域的两大重要资源,它们为训练和评估各种视觉模型提供了关键的数据支持。目标检测数据集主要用于训练模型以识别和定位图像中的特定物体。这类数据集通常包含大量的标注图像,每张图像中都标记了多个物体的位置和类别。例如,COCO(CommonObjectsinContext)数据集就是一个常用的目标检测数据集,它包含了80个类别的日常物体,如人、车、动物等,并提供了
- OpenAI 实战进阶教程 - 第1节:OpenAI API 架构与基础调用
山海青风
人工智能人工智能pythonprompt
目标掌握OpenAIAPI的基础调用方法。理解如何通过API进行内容生成。使用实际应用场景帮助零基础读者理解API的基本用法。一、什么是OpenAIAPI?OpenAIAPI是一种工具,允许开发者通过编程方式与OpenAI的强大语言模型(例如gpt-3.5-turbo和gpt-4)进行交互。简单来说,它就像一个“AI助手”,可以回答问题、生成文本、总结信息等。实际应用场景举例:**客户支持自动化:
- 高效的并发编程与性能优化:在多核时代,如何高效利用并发
杨胜增
性能优化
高效的并发编程与性能优化:在多核时代,如何高效利用并发在现代软件开发中,尤其是面向高并发、高负载的系统,如何设计高效的并发程序已经成为一项至关重要的技能。无论是Web应用、电商平台,还是高频交易系统,都需要处理大量的并发请求。我们希望能够利用多核处理器的优势,同时保证系统在并发情况下仍能高效、稳定地运行。并发编程的核心目标是:合理利用多核CPU进行任务的并行处理,提高应用的响应速度和吞吐量。但并发
- python cv2 matchtemplate_机器学习进阶-图像金字塔与轮廓检测-模板匹配(单目标匹配和多目标匹配)1.cv2.matchTemplate(进行模板匹配) 2.cv2.minMa...
weixin_39621044
pythoncv2matchtemplate
1.cv2.matchTemplate(src,template,method)#用于进行模板匹配参数说明:src目标图像,template模板,method使用什么指标做模板的匹配度指标2.min_val,max_val,min_loc,max_loc=cv2.minMaxLoc(ret)#找出矩阵中最大值和最小值,即其对应的(x,y)的位置参数说明:min_val,max_val,min_lo
- 为什么要构建知识体系?
linkingfei
其他
转载任何的学习都是在增强人的可控能力,如何构建自己的知识体系?这是一个很大的话题,知乎和分答上不少人都提问过这个问题,可见也是一个相对比较普遍的话题。总结下来大概有六个步骤:目标、获取、提炼、输出、聚合、扩充。1、目标:知识架构是达成目标的一种路径获取知识一定是为了解决某一个问题,或者是满足某方面的好奇心。解决问题就是在树立目标。抛开目标谈构建知识体系是一个伪命题。我们太希望找到一套速成的标准答案
- python算法和数据结构刷题[3]:哈希表、滑动窗口、双指针、回溯算法、贪心算法
励志成为美貌才华为一体的女子
数据结构与算法算法数据结构散列表
回溯算法「所有可能的结果」,而不是「结果的个数」,一般情况下,我们就知道需要暴力搜索所有的可行解了,可以用「回溯法」。回溯算法关键在于:不合适就退回上一步。在回溯算法中,递归用于深入到所有可能的分支,而迭代(通常在递归函数内部的循环中体现)用于探索当前层级的所有可能选项。组合问题39.组合总和-力扣(LeetCode)给你一个无重复元素的整数数组candidates和一个目标整数target,找出
- 【主线】实现MyBatis : Chapter4 : 完善参数绑定,引入结果映射
山与长生
MyBatismybatis
本章目标:支持CountryselectByIdAndName(@Param("id")Stringid,@Param("name")Stringname)的调用,且参数自行匹配,不需要mock支持结果的自动映射,新建PeopleselectById(@Param("id")Longid)只需修改配置即可执行过程分析对于每个参数,我们已经在解析阶段就知道它对应的配置,而在运行时我们又拿到了实参,理
- [HOT 100] 0167. 两数之和 ||
水蓝烟雨
算法HOT100
文章目录1.题目链接2.题目描述3.题目示例4.解题思路5.题解代码6.复杂度分析1.题目链接167.两数之和II-输入有序数组-力扣(LeetCode)2.题目描述给你一个下标从1开始的整数数组numbers,该数组已按非递减顺序排列,请你从数组中找出满足相加之和等于目标数target的两个数。如果设这两个数分别是numbers[index1]和numbers[index2],则1target)
- 决策树ID3算法
小波LFZZB
算法决策树机器学习数据挖掘sklearn
决策树决策树概念决策树,一种基于规则的机器学习方法,主要用于分类和回归,常用作机器学习中的预测模型。树形结构图,树中每个节点表示某个对象,每个分叉路径代表的某个可能的属性值,每个叶结点对应从根节点到该叶节点所经历的路径所表示的对象的值。它通过递归地划分数据空间并在每个分区内拟合一个简单的预测模型来工作。选择分区是为了在每个细分中最大化目标变量的同质性。决策树特点1.树形结构决策树由根节点、内部节点
- 监督学习、无监督学习和强化学习的特点和应用场景
BugNest
AI学习ai机器学习人工智能
在机器学习中,监督学习、无监督学习和强化学习是三种核心的学习范式,它们各自具有独特的特点和应用场景。以下是对这三种学习方法的详细对比和总结:监督学习(SupervisedLearning)特点:数据标注:训练数据包含明确的输入特征和对应的标签(目标输出)。学习方式:模型通过学习输入特征和标签之间的关系来进行训练,这种关系通常表现为一个映射函数。预测能力:一旦训练完成,模型能够对新的、未见过的输入数
- 反向代理模块jmh
xianwu543
c++mysql网络开发语言数据库
1概念1.1反向代理概念反向代理是指以代理服务器来接收客户端的请求,然后将请求转发给内部网络上的服务器,将从服务器上得到的结果返回给客户端,此时代理服务器对外表现为一个反向代理服务器。对于客户端来说,反向代理就相当于目标服务器,只需要将反向代理当作目标服务器一样发送请求就可以了,并且客户端不需要进行任何设置。1.2特点反向代理是代理服务器,为服务器收发请求,使真实服务器对客户端不可见。原文链接:h
- spring boot应用程序接口调优记录
weixin_50825389
springboot服务器java
一、接口功能本次目标接口为新契约的投保单导入,主要功能包括投保单创建、投核保规则校验、应收保费创建、投保单签发处理,实现外部合作方承保的投保单一步导入保司功能。一般来说,外部合作方会采用批处理的方式进行导入,所以在性能上会有一定要求。二、预期目标本次预期目标为在一个标准的配置上(4C8G)服务器上,实现RT600内,TPS80以上。三、性能优化过程1.首次压测结果从上面的压测数据我们看到,当前核保
- 一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
struggle2025
人工智能数据挖掘目标检测深度学习自然语言处理语言模型集成学习
一、GenBIAI代理介绍(文末提供下载)github地址:https://github.com/Canner/WrenAI本文信息图片均来源于github作者主页在WrenAI,我们的使命是通过生成式商业智能(GenBI)使组织能够无缝访问数据,从而彻底改变商业智能。我们的目标是通过先进的AI驱动型解决方案、可组合数据框架和语义智能来打破数据洞察的障碍,使每个团队成员都能自信地做出更快、更智能的
- Scikit-learn_聚类算法_K均值聚类
飞Link
Water算法机器学习人工智能
一.描述首先从X数据集中选择k个样本作为质心,然后重复以下两个步骤来更新质心,直到质心不再显著移动为:第一步将每个样本分配到距离最近的质心第二步根据每二个质心所有样本的平均值来创建新的质心二.用法和参数KMeans类MiniBatchKMeans类:是KMeans类的变种,他是用小批量来减少计算时间,而多个批次仍然尝试优化相同的目标函数。小批量是输入数据的子集,是每次训练迭代中的随机抽样。小批量大
- 使用URL Rewrite实现网站伪静态
实现网站的伪静态功能,通常是通过配置Web服务器的URL重写功能(URLRewrite)来实现的。伪静态能有效提升网站的用户体验与SEO优化,给用户呈现简洁、易懂的URL地址,而实际上服务器内部还是通过动态的URL进行处理。下面,我们详细介绍如何通过配置URLRewrite规则来实现这一目标。1.配置Web服务器:确保你的网站运行在支持URLRewrite的Web服务器上,如Apache或Ngin
- AI大模型基于LLM的Agent架构图解
AI产品经理
人工智能深度学习语言模型学习
Agent定义Agent是什么?Agent是一种能够自主决策、采取行动以达到某种目标的实体。AIAgent的确定义:基于人工智能(尤其是大模型)技术,能够感知和理解环境,并采取行动以完成目标的智能实体。Agent能干什么?AIAgent主要依托LLM模型和具体的业务场景来调用相应的工具来完成任务目标,智能化程度和行业贴合度会更明显。典型案例有什么?智能核保应用,如果解决方案搭载AIAgent能力,
- Spring的设计理念之【事务管理】
冰糖心158
java
Spring框架的事务管理是其核心设计理念之一,旨在简化复杂的事务处理逻辑,提供统一的编程模型,同时支持灵活的事务策略配置。以下是Spring事务管理的关键设计理念和实现机制:一、设计目标解耦业务逻辑与事务管理将事务管理代码从业务逻辑中剥离,开发者只需关注业务逻辑,事务的开启、提交、回滚等由框架统一处理。统一事务抽象提供PlatformTransactionManager接口,抽象不同事务实现(如
- 《Kotlin核心编程》热身篇——Kotlin基础内容总结
Swuagg
Kotlinkotlin开发语言android
1Kotlin设计哲学目标:更好的Java编程方式:面向对象命令式编程+函数式编程(Scala有包括宏)一些改良:单例模式,data数据类,NPE,可变性,更多的语法糖,类型推导2Kotlin基础语法2.1类型声明类型声明:类型名放在后面方法返回值类型,是否需要显示类型声明:表达式函数体(单行表达式与等号),代码块函数体。需要进行显示类型声明的情况:a、是函数的参数;b、是非表达式定义的函数,返回
- 不同模型对 Emoji 和普通文本的处理表现,Emoji的向量嵌入(含测试代码)
2301_79306982
机器学习人工智能berttransformer
数据处理目标保留emoji和文本的原始形态。分词时不拆分emoji符号,让emoji成为一个完整的Token。确保分词结果与模型兼容,既能表达语义,也能保留emoji的特性。验证代码fromtransformersimportAutoTokenizer#测试的模型列表models=["bert-base-uncased",#BERT"vinai/bertweet-base",#BERTweet"r
- Spring的应用场景和优势
冰糖心158
SpringFrameworkjava
Spring框架是Java生态中最流行的企业级应用开发框架之一,其设计目标是简化复杂性,提供灵活性和可扩展性。以下是Spring的应用场景和核心优势的详细说明:一、Spring的主要应用场景企业级Web应用开发SpringMVC:用于构建分层清晰的Web应用,支持RESTfulAPI开发。SpringWebFlux:支持响应式编程(ReactiveProgramming),适合高并发、非阻塞的异步
- c++揭秘2024春晚刘谦老师的魔术,快来看看吧
天若有情673
c++c++开发语言
封面:源码:#include#include#includeusingnamespacestd;structCard{intvalue;//用数字代表扑克牌,简化处理};//打印牌堆voidprintDeck(constvector&deck){for(auto&card:deck){cout&deck,intnameLength){rotate(deck.begin(),deck.begin()
- 99.20 金融难点通俗解释:中药配方比喻马科维茨资产组合模型(MPT)
AI量金术师
金融资产组合模型进化论金融人工智能python机器学习大数据数据库
目录0.承前1.核心知识点拆解2.中药搭配比喻方案分析2.1比喻的合理性3.通俗易懂的解释3.1以中药房为例3.2配方原理4.实际应用举例4.1基础配方示例4.2效果说明5.注意事项5.1个性化配置5.2定期调整6.总结7.代码实现0.承前本文主旨:本文通过中药配方这一生动比喻来解释马科维茨资产组合模型的核心概念。将投资收益比作药效,风险比作苦味,资产相关性比作药材相互作用,并通过Python代码
- Three.js + GIS:打造三维地理信息系统的教程
全栈探索者chen
threeJSjavascript开发语言ecmascript学习three.js前端3d
Three.js+GIS:打造三维地理信息系统的教程Three.js是构建WebGL3D应用的强大工具,而结合GIS(地理信息系统)后,可以实现炫酷的三维地理可视化效果。本教程将从基础入手,教你如何用Three.js打造一个简单的三维GIS应用。一、项目规划1.目标功能我们希望实现以下功能:加载三维地图:加载全球地图或指定区域。添加三维数据:在地图上展示建筑、标注等3D数据。交互功能:用户可以缩放
- 第 3 天:Actor 是什么?创建你的第一个游戏对象!
Bluesonli
UE5C++进阶之路:从零到独立开发3A级游戏!游戏ue5学习虚幻unrealengine虚幻引擎
目标:了解UnrealEngine5中的Actor,创建并操控你的第一个C++游戏对象!1️⃣什么是Actor?在UnrealEngine5中,Actor是游戏世界(World)中的基本对象,几乎所有的游戏元素(玩家、敌人、道具、灯光、摄像机等)都是Actor的子类。Actor的主要特点可放入关卡(Level)中可以拥有组件(Components)(如网格、灯光、声音等)支持脚本控制(C++/蓝图
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理