用试探回溯法解决N皇后问题

学校数据结构的课程实验之一。

数据结构:(其实只用了一个二维数组)

算法:深度优先搜索,试探回溯

需求分析:

  设计一个在控制台窗口运行的“n皇后问题”解决方案生成器,要求实现以下功能:

  由n*n个方块排成nn列的正方形称为n元棋盘。如果两个皇后位于n元棋盘上的同一行、同一列或同一对角线上,则称它们在互相攻击。现要找出使棋盘上n个皇后互不攻击的布局。

  编制程序解决上述问题,以n=6运行程序,输出结果。

算法解释:

  首先试探当前行第一个可用的位置(列、对角线没有被占领),摆放皇后之后,试探下一行的第一个可用位置;如果遇到此行没有可用位置,则返回上一行,移除上一行的皇后,试探此行的下一个可用位置,直至n个皇后全部摆放好,生成一种方案。

主函数:

 1 int main()

 2 /*Pre: The user enters a valid board size.

 3 Post: All solutions to the n-queens puzzle for the selected board size

 4 are printed.

 5 Uses: The class Queens and the recursive functionsolve from. */

 6 {

 7     int board_size;

 8     char choice = 'y';

 9     char enter;

10     while (choice == 'y')//由用户决定是否继续

11     {

12         sum = 0;

13         cout << "What is the size of the board?"<<flush;

14         cin >> board_size;

15         if(board_size < 0||board_size > max_board)

16             cout<<"The number must between 0 and "<<max_board<<endl;

17         else

18         {

19             Queens configuration(board_size);//创建size*size的对象

20             

21             cout << "there is total " << solve_from(configuration) << " configurations." << endl;//打印所有解决方案和方案个数

22         }

23         cout << endl << "Would you like to continue? [y/n]" << endl;

24         //回车符的消去

25         fflush(stdin);

26         while ((enter = cin.get()) == '\n')

27         {

28             enter = cin.get();

29         }

30         cin.putback(enter);

31         cin >> choice;//移植了计算器的代码

32     }

33     return 0;

34 }

辅助函数(计算出所有解决方案)(参考了经典教材"Data Structures and Program Design in C++" Robert L. Kruse, Alexander J. Ryba 高等教育出版社-影印版)

 1 int sum = 0;//记录解决方案个数

 2 

 3 int solve_from(Queens &configuration)//通过递归、回溯找到所有解决方案并打印

 4 /*Pre: the queens configuration represents a partially completed

 5 arrangement of nonattacking queens on a chessboard.

 6 Post: all n-queens solutions that extend the given configuration are

 7 printed. The configuration is restored to its initial state.

 8 Uses: the class Queens and the function solve_from, recursively.*/

 9 {

10     if (configuration.is_solved())//当生成一种解决方案时打印,sum自增一

11     {

12         sum++;

13         configuration.print();

14         cout <<"================" <<endl;

15     }

16     else

17         for(int col=0; col<configuration.board_size; col++)

18             if(configuration.unguarded(col))

19             {

20                 configuration.insert(col);

21                 solve_from(configuration);//recursively continue to add queens当生成一种解决方案时打印

22                 configuration.remove(col);//return the last row and the last col.试探上一层的下一种方案(无论上一次试探是成功还是失败)

23             }

24     return sum;

25 }

注:

  每次回溯其实有两种可能:“摆放满了n个皇后”或者“此行没有可放的位置”,二者都会返回上一行去试探下一种可能,只不过摆满n个皇后的情况会生成一种方案(被if截获,回到上一层循环),生成后还是回到倒数第二行再进行试探。因此一次深度优先搜索(调用一次solve_from函数)可以将所有方案全部输出。

“皇后”类的定义

 1 const int max_board = 15;//最大棋盘阶数

 2 using namespace std;

 3 

 4 class Queens

 5 {

 6 public:

 7     Queens(int size);

 8     bool is_solved() const;//判断是否完成一种方案

 9     void print() const;//打印当前方案

10     bool unguarded(int col) const;//判断某格是否可放皇后

11     void insert(int col);//摆放皇后

12     void remove(int col);//移除

13     int board_size;//dimension of board = maximum number of queens

14 private:

15     int count;//current number of queens = first unoccupied row

16     bool queen_square[max_board][max_board];//存放棋盘状态的二维数组

17 };

“皇后”类的实现(同样参考了经典教材"Data Structures and Program Design in C++" Robert L. Kruse, Alexander J. Ryba 高等教育出版社-影印版)

 1 #include <iostream>

 2 #include "Queens.h"

 3 

 4 Queens::Queens(int size)

 5 {

 6     board_size = size;

 7     count = 0;//从第一行开始计数

 8     for(int row=0; row<board_size; row++)

 9         for(int col=0; col<board_size; col++)

10             queen_square[row][col] = false;//生成size*size的空棋盘

11 }

12 

13 bool Queens::is_solved() const

14 /*whether the number of queens already placed 

15 equals board_size*/

16 {

17     bool solved = false;

18     if(count == board_size)//当board_size个皇后都摆放完毕时,生成一种方案

19         solved = true;

20     return solved;

21 }

22 

23 void Queens::print() const

24 {

25     for (int row = 0; row < board_size; row++)

26     {

27         for (int col = 0; col < board_size; col++)

28             if (queen_square[row][col] == true)

29                 cout << "* ";

30             else

31                 cout << "_ ";//逐个打印棋盘元素,有皇后打印'*',无皇后打印'_'

32         cout << endl;

33     }

34 }

35 

36 bool Queens::unguarded(int col) const

37 /*Post: Return true or false according as the square in the first

38 unoccupied row(row count) and colum col is not guarded by andy queen*/

39 {

40     int i;

41     bool ok = true;//turn false if we find a queen in column or diagonal

42     for(i=0; ok && i < count; i++)

43         ok = !queen_square[i][col];//check upper part of column同列

44     for(i=1; ok && count-i >= 0 && col-i >=0; i++)

45         ok = !queen_square[count-i][col-i];//check upper-left diagonal

46     for(i=1; ok && count-i >= 0 && col+i < board_size; i++)

47         ok = !queen_square[count-i][col+i];//chekck upper-right diagonal

48     return ok;

49 }

50 

51 void Queens::insert(int col)

52 /*Pre: The square in the first unoccupied row(row count) and column is not

53 guarded by any queen.

54 Post: A queen has been inserted into the square at row count and column col;

55 count has been incremented by 1*/

56 {

57     queen_square[count++][col] = true;//放入皇后,计数器自增一(到下一行)

58 }

59 

60 void Queens::remove(int col)

61 /*Pre: there is a queen in the square in row count-1 and column col.

62 Post: the above queen has been removed; count has been decremented by 1.*/

63 {

64     queen_square[count-1][col] = false;//移出皇后,计数器自减一(回上一行)

65     count--;

66 }
Queen.cpp

运行截图:

用试探回溯法解决N皇后问题

注:

  当输入的棋盘阶数比较大(如:8)时,命令行窗口的缓冲区默认300行可能会不够显示,所以要在属性修改“高度”,使所有结果都显示出来。

你可能感兴趣的:(问题)