- 计算机毕业设计项目、管理系统、可视化大屏、大数据分析、协同过滤、推荐系统、SSM、SpringBoot、Spring、Mybatis、小程序项目编号1000-1499
lonzgzhouzhou
spring课程设计springboot
大家好,我是DeBug,很高兴你能来阅读!作为一名热爱编程的程序员,我希望通过这些教学笔记与大家分享我的编程经验和知识。在这里,我将会结合实际项目经验,分享编程技巧、最佳实践以及解决问题的方法。无论你是初学者还是有一定经验的程序员,我都希望能够为你提供有价值的内容,帮助你更好地理解编程世界。让我们一起探索编程的乐趣,一起成长,一起学习,谢谢你们的支持与关注!【源码咨询】可接Java程序设计,Bug
- 【Python使用】嘿马推荐系统全知识和项目开发教程第2篇:1.4 案例--基于协同过滤的电影推荐,1.5 推荐系统评估
python后端
教程总体简介:1.1推荐系统简介学习目标1推荐系统概念及产生背景2推荐系统的工作原理及作用3推荐系统和Web项目的区别1.3推荐算法1推荐模型构建流程2最经典的推荐算法:协同过滤推荐算法(CollaborativeFiltering)3相似度计算(SimilarityCalculation)4协同过滤推荐算法代码实现:二根据用户行为数据创建ALS模型并召回商品2.0用户行为数据拆分2.1预处理be
- Python打卡训练营day20-奇异值SVD分解
sak77
python打卡训练营python机器学习奇异值分解SVD
知识点回顾:线性代数概念回顾(可不掌握)奇异值推导(可不掌握)奇异值的应用特征降维:对高维数据减小计算量、可视化数据重构:比如重构信号、重构图像(可以实现有损压缩,k越小压缩率越高,但图像质量损失越大)降噪:通常噪声对应较小的奇异值。通过丢弃这些小奇异值并重构矩阵,可以达到一定程度的降噪效果。推荐系统:在协同过滤算法中,用户-物品评分矩阵通常是稀疏且高维的。SVD(或其变种如FunkSVD,SVD
- Java中的推荐系统算法:如何实现高效的协同过滤与矩阵分解
省赚客app开发者
java算法矩阵
Java中的推荐系统算法:如何实现高效的协同过滤与矩阵分解大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!今天我们来讨论如何在Java中实现高效的推荐系统算法,特别是协同过滤和矩阵分解。这两种方法是推荐系统中最常用的技术,广泛应用于电商平台、社交媒体、流媒体等领域。一、推荐系统的基本概念推荐系统旨在根据用户的历史行为、偏好、社交关系等信息,为用户推荐感兴趣的商品、内容
- JAVA推荐系统-基于用户和物品协同过滤的电影推荐
泰山AI
技术交流推荐算法java算法
系统原理该系统使用java编写的基于用户的协同过滤算法(UserCF)和基于物品(此应用中指电影)的协同过滤(ItemtemCF)利用统计学的相关系数经常皮尔森(pearson)相关系数计算相关系数来实现千人千面的推荐系统。协同过滤算法协同过滤推荐算法是诞生最早,并且较为著名的推荐算法。主要的功能是预测和推荐。协同过滤(CollaborativeFiltering,简写CF)是推荐系统最重要得思想
- 以java电商平台为例,做一个基于物品的协同推荐算法
浪工程序设计合作
软件开发教学java推荐算法开发语言
博主介绍:全网个人号和企业号粉丝40W+,每年辅导几千名大学生较好的完成毕业设计,专注计算机软件领域的项目研发,不断的进行新技术的项目实战⭐️热门专栏推荐订阅⭐️订阅收藏起来,防止下次找不到有成品项目也可定制,需求的各位可以先收藏起来文章结尾有联系名片找我在电商平台中,基于物品的协同过滤(Item-basedCollaborativeFiltering)是一种常用的推荐算法。它的核心思想是:如果用
- 【C语言练习】095. 编写代码实现简单的推荐系统
视睿
从零开始学习机器人c语言算法开发语言机器学习数据结构
095.编写代码实现简单的推荐系统095.编写代码实现简单的推荐系统基于用户的协同过滤推荐系统算法步骤示例代码:简单的基于用户的协同过滤推荐系统代码说明示例运行扩展功能C语言编写推荐系统的设计思路基于内容的推荐系统协同过滤推荐系统基于矩阵分解的推荐基于流行度的推荐混合推荐系统C语言编写推荐系统的适用场景C语言编写推荐系统的局限性替代方案建议095.编写代码实现简单的推荐系统在C语言中实现一个简单的
- 利用Flink在大数据领域实现实时推荐系统
利用Flink在大数据领域实现实时推荐系统关键词:Flink、实时推荐系统、大数据处理、流式计算、机器学习、用户画像、协同过滤摘要:本文深入探讨如何利用ApacheFlink构建高性能的实时推荐系统。我们将从推荐系统的基本原理出发,详细分析Flink在实时数据处理中的优势,并通过完整的项目案例展示如何实现一个端到端的实时推荐解决方案。文章涵盖核心算法实现、系统架构设计、性能优化策略以及实际应用场景
- 【一切皆是映射】AI 大模型 LLM + 推荐系统 RS:个性化的艺术——基于LLM的推荐系统用户行为预测
AI天才研究院
计算AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
【一切皆是映射】AI大模型LLM+推荐系统RS:个性化的艺术——基于LLM的推荐系统用户行为预测关键词:大语言模型(LLM)、推荐系统、用户行为预测、深度学习、自然语言处理、个性化推荐、多模态融合1.背景介绍在当今数字化时代,推荐系统已成为互联网服务的核心组成部分,广泛应用于电子商务、社交媒体、新闻资讯等领域。传统的推荐系统主要依赖于协同过滤、内容过滤等技术,虽然取得了一定的成效,但在处理复杂、动
- AI推荐系统演进史:从协同过滤到图神经网络与强化学习的融合
万米商云
人工智能神经网络深度学习
每一次滑动手机屏幕,电商平台向你推荐心仪商品的背后,是超过百亿量级的浮点运算。从早期的“猜你喜欢”到如今的“比你更懂你”,商品推荐引擎已悄然完成从简单规则到深度智能的技术跃迁。一、协同过滤:推荐系统的基石与演进协同过滤(CollaborativeFiltering)作为推荐系统的“古典方法”,其核心思想朴素却有力:相似的人喜欢相似的东西。早期的矩阵分解技术(如2009年的SVD算法)将用户-物品交
- 从零构建AI原生智能推荐系统:Python全流程指南
AI原生应用开发
AI-nativepython开发语言ai
从零构建AI原生智能推荐系统:Python全流程指南关键词:智能推荐系统、协同过滤、深度学习推荐、Python实战、AI原生架构、数据预处理、模型评估摘要:本文将带你从0到1构建一个AI原生智能推荐系统。我们会用通俗易懂的语言解释推荐系统的核心原理,结合Python代码实战演示数据处理、模型训练、效果评估的全流程,并揭示AI原生系统“数据-模型-业务”闭环的关键设计。无论你是刚入门的AI爱好者,还
- 协同过滤(Collaborative Filtering)与基于内容过滤(Content-Based Filtering)
土豆羊626
机器学习算法机器学习人工智能
以下是协同过滤(CollaborativeFiltering)与基于内容过滤(Content-BasedFiltering)的对比分析:协同过滤协同过滤的核心思想是通过用户的历史行为(如评分、点击、购买等)发现用户之间的相似性或物品之间的相似性,从而推荐用户可能感兴趣的物品。它分为两类:基于用户的协同过滤和基于物品的协同过滤。基于用户的协同过滤通过找到与目标用户兴趣相似的其他用户,推荐这些用户喜欢
- 【推荐算法】推荐算法演进史:从协同过滤到深度强化学习
白熊188
推荐算法推荐算法算法机器学习
推荐算法演进史:从协同过滤到深度强化学习一、传统推荐时代:协同过滤的奠基(1990s-2006)1.1算法背景:信息爆炸的挑战1.2核心算法:协同过滤1.3局限性二、深度学习黎明:神经网络初探(2010-2015)2.1算法背景:深度学习的崛起2.2奠基模型:DeepCrossing2.3NeuralCF:协同过滤的神经网络化三、特征交叉革命:结构创新浪潮(2016-2017)3.1Wide&De
- 【推荐算法】推荐系统核心算法深度解析:协同过滤 Collaborative Filtering
白熊188
推荐算法算法机器学习人工智能推荐算法推荐
推荐系统核心算法深度解析:协同过滤一、协同过滤的算法逻辑协同过滤的两种实现方式二、算法原理与数学推导1.相似度计算关键公式2.矩阵分解(MF)进阶三、模型评估1.准确性指标2.排序指标(Top-N推荐)3.多样性&新颖性四、应用案例五、面试常见问题六、详细优缺点优点缺点七、优化方向总结一、协同过滤的算法逻辑协同过滤的核心思想是利用群体智慧:假设:相似用户对物品有相似偏好,相似物品会被相似用户喜欢。
- 科研学习 论文解读——面向电商内容安全风险管控的协同过滤推荐算法研究(1)
2401_84296945
学习安全推荐算法
面向电商内容安全风险管控的协同过滤推荐算法研究-中国知网(cnki.net)")面向电商内容安全风险管控的协同过滤推荐算法研究*摘要:**[目的/意义]随着电商平台商家入驻要求降低以及商品上线审核流程简化,内容安全风险问题成为协同过滤推荐算法伦理审查的核心问题之一。[方法/过程]本文将内容安全风险问题纳入用户协同过滤推荐算法的优化过程,提出一种改进的推荐算法。首先,采用混合研究方法对内容安全风险商
- Redis最佳实践——性能优化技巧之缓存预热与淘汰策略
纪元A梦
Redis常见问题与最佳实践缓存redis性能优化
Redis在电商应用中的缓存预热与淘汰策略优化一、缓存预热核心策略1.预热数据识别方法热点数据发现矩阵:维度数据特征发现方法历史访问频率日访问量>10万次分析Nginx日志,使用ELK统计时间敏感性秒杀商品、新品上线运营数据同步关联数据购物车关联商品、同类推荐协同过滤算法业务优先级核心商品、基础配置人工标记+权重系统实时热点发现方案://基于滑动窗口的热点探测publicclassHotKeyDe
- 智能推荐系统:协同过滤与深度学习结合
layneyao
ai深度学习人工智能
智能推荐系统:协同过滤与深度学习结合系统化学习人工智能网站(收藏):https://www.captainbed.cn/flu文章目录智能推荐系统:协同过滤与深度学习结合摘要引言技术原理对比1.协同过滤算法:基于相似性的推荐2.深度学习模型:基于语义理解的推荐混合推荐系统技术路径1.特征融合(Feature-LevelFusion)2.模型融合(Model-LevelFusion)3.序列融合(S
- 旅游推荐数据分析可视化系统算法
万能程序员-传康Kk
旅游数据分析算法
旅游推荐数据分析可视化系统算法本文档详细介绍了旅游推荐数据分析可视化系统中使用的各种算法,包括推荐算法、数据分析算法和可视化算法。目录推荐算法基于用户的协同过滤推荐基于浏览历史的推荐主题推荐算法亲子游推荐算法文化游推荐算法自然风光推荐算法随机推荐算法数据分析与可视化算法词云生成算法地理分布可视化用户活跃度分析评分与销量分析价格分布分析推荐算法基于用户的协同过滤推荐协同过滤是一种常用的推荐算法,通过
- 协同过滤算法本质?
非小号
AI算法机器学习
协同过滤算法(CollaborativeFilteringAlgorithm)的核心实质是利用用户群体的行为数据(如评分、点击、购买等),挖掘用户与物品之间的潜在关联,从而实现个性化推荐。其核心思想可以概括为以下两点:一、基于群体行为的“协同性”协同过滤的本质是通过观察群体行为来推断个体偏好,而非依赖物品本身的属性或用户的显式特征(如电影类型、用户年龄等)。具体表现为:用户-用户协同(User-B
- 智科 机器学习毕业设计项目选题推荐
kooerr
毕业设计python毕设
文章目录1前言1.1选题注意事项1.1.1难度怎么把控?1.1.2题目名称怎么取?1.2开题选题推荐1.2.1起因1.2.2核心-如何避坑(重中之重)1.2.3怎么办呢?2选题概览3项目概览题目1:基于协同过滤的电影推荐系统题目2:基于wifi的室内定位算法设计与实现题目3:基于opencv的银行卡识别题目4:基于python的答题卡识别评分系统题目5:基于深度学习的安检管制物品识别系统题目6:基
- 智科 深度学习毕业设计开题思路
DD项目分享家
毕业设计python毕设
文章目录1前言1.1选题注意事项1.1.1难度怎么把控?1.1.2题目名称怎么取?1.2开题选题推荐1.2.1起因1.2.2核心-如何避坑(重中之重)1.2.3怎么办呢?2选题概览3项目概览题目1:基于协同过滤的电影推荐系统题目2:基于wifi的室内定位算法设计与实现题目3:基于opencv的银行卡识别题目4:基于python的答题卡识别评分系统题目5:基于深度学习的安检管制物品识别系统题目6:基
- 智科python毕设项目选题帮助
DD项目分享家
毕业设计python毕设
文章目录1前言1.1选题注意事项1.1.1难度怎么把控?1.1.2题目名称怎么取?1.2开题选题推荐1.2.1起因1.2.2核心-如何避坑(重中之重)1.2.3怎么办呢?2选题概览3项目概览题目1:基于协同过滤的电影推荐系统题目2:基于wifi的室内定位算法设计与实现题目3:基于opencv的银行卡识别题目4:基于python的答题卡识别评分系统题目5:基于深度学习的安检管制物品识别系统题目6:基
- 基于JavaSE实现协同过滤算法_电商商品推荐
就叫飞六吧
前端
importjava.text.ParseException;importjava.text.SimpleDateFormat;importjava.util.*;importjava.util.concurrent.TimeUnit;importjava.util.stream.Collectors;publicclassECommerceRecommender{//商品类staticclass
- springboot基于协同过滤算法商品推荐系统(11011)
codercode2022
springboot后端javaspringtypescriptspringcloudjava-zookeeper
有需要的同学,源代码和配套文档领取,加文章最下方的名片哦一、项目演示项目演示视频二、资料介绍完整源代码(前后端源代码+SQL脚本)配套文档(LW+PPT+开题报告)远程调试控屏包运行三、技术介绍Java语言SSM框架SpringBoot框架Vue框架JSP页面Mysql数据库IDEA/Eclipse开发有需要的同学,源代码和配套文档领取,加文章最下方的名片哦!
- 基于 Flink 的实时推荐系统:从协同过滤到多模态语义理解
长风清留扬
程序人生flink大数据python
基于Flink的实时推荐系统:从协同过滤到多模态语义理解嘿,各位技术小伙伴们!在这个信息爆炸的时代,你是不是常常惊叹于各大平台仿佛能“读懂你的心”,精准推送你感兴趣的内容呢?今天,小编就带大家深入探寻背后的神奇技术——基于Flink的实时推荐系统,从协同过滤一步步迈向超酷的多模态语义理解。准备好开启这场奇妙的技术之旅了吗?推荐系统基础大揭秘推荐系统,简单来说,就是在海量数据中,为用户精准找出他们可
- 协调过滤算法-电影推荐
银河以北呀
机器学习sklearn
协调过滤算法-电影推荐协调过滤概述协同过滤(CollaborativeFiltering)是推荐系统中一种非常基础的方法,它主要分为两个方面:实时的协同作用和预先的过滤处理。在线协同指的是利用实时数据来识别用户可能感兴趣的商品,而离线过滤则是筛选掉一些不太适合推荐的内容,例如那些评分较低的商品,或者用户已经购买过的商品。在协同过滤的应用中,我们通常面对的是m个商品和m个用户的数据集,但只有部分用户
- python数据分析实验4:基于协同过滤的电影推荐系统从原理到代码实战
HowserSu
python数据分析推荐算法
一、引言在大数据时代,推荐系统已成为解决信息过载的重要工具。其中,协同过滤(CollaborativeFiltering)作为推荐系统的经典算法,通过分析用户与物品的交互行为,能够精准捕捉用户偏好,广泛应用于电商、流媒体等场景。本文将基于Python实现一个电影推荐系统,详细讲解用户-用户协同过滤(UBCF)和物品-物品协同过滤(IBCF)的核心逻辑,并提供完整的代码示例。二、技术原理:协同过滤核
- 基于协同过滤推荐算法+数据可视化大屏+SpringBoot+Vue的半成品配菜服务平台系统设计和实现(源码+LW+部署讲解)
阿勇学长
大数据项目实战案例Java精品毕业设计实例微信小程序项目实战案例1024程序员节半成品配菜服务平台系统Java毕业设计数据可视化
博主介绍:✌全网粉丝50W+,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等
- SVD奇异值分解
zx43
python训练营打卡内容机器学习人工智能python笔记
知识点回顾:线性代数概念回顾(可不掌握)奇异值推导(可不掌握)奇异值的应用特征降维:对高维数据减小计算量、可视化数据重构:比如重构信号、重构图像(可以实现有损压缩,k越小压缩率越高,但图像质量损失越大)降噪:通常噪声对应较小的奇异值。通过丢弃这些小奇异值并重构矩阵,可以达到一定程度的降噪效果。推荐系统:在协同过滤算法中,用户-物品评分矩阵通常是稀疏且高维的。SVD(或其变种如FunkSVD,SVD
- 构建推荐系统的相似检索技术:从距离度量到深度学习的快速了解
张彦峰ZYF
互联网系统架构与深入学习汇总算法后端推荐算法
目录一、相似检索方法总体分析二、基于距离度量的方法(一)余弦相似度(二)欧氏距离(三)曼哈顿距离(四)汉明距离三、基于集合的方法(一)Jaccard相似度(二)杰卡德距离四、基于内容的方法五、协同过滤方法(一)基于用户的协同过滤基本原理应用分析案例数据准备工作原理步骤案例分析(二)基于物品的协同过滤基本原理应用分析案例数据准备工作原理步骤案例分析六、基于图的方法(一)基本原理(二)案例应用案例:社
- JAVA中的Enum
周凡杨
javaenum枚举
Enum是计算机编程语言中的一种数据类型---枚举类型。 在实际问题中,有些变量的取值被限定在一个有限的范围内。 例如,一个星期内只有七天 我们通常这样实现上面的定义:
public String monday;
public String tuesday;
public String wensday;
public String thursday
- 赶集网mysql开发36条军规
Bill_chen
mysql业务架构设计mysql调优mysql性能优化
(一)核心军规 (1)不在数据库做运算 cpu计算务必移至业务层; (2)控制单表数据量 int型不超过1000w,含char则不超过500w; 合理分表; 限制单库表数量在300以内; (3)控制列数量 字段少而精,字段数建议在20以内
- Shell test命令
daizj
shell字符串test数字文件比较
Shell test命令
Shell中的 test 命令用于检查某个条件是否成立,它可以进行数值、字符和文件三个方面的测试。 数值测试 参数 说明 -eq 等于则为真 -ne 不等于则为真 -gt 大于则为真 -ge 大于等于则为真 -lt 小于则为真 -le 小于等于则为真
实例演示:
num1=100
num2=100if test $[num1]
- XFire框架实现WebService(二)
周凡杨
javawebservice
有了XFire框架实现WebService(一),就可以继续开发WebService的简单应用。
Webservice的服务端(WEB工程):
两个java bean类:
Course.java
package cn.com.bean;
public class Course {
private
- 重绘之画图板
朱辉辉33
画图板
上次博客讲的五子棋重绘比较简单,因为只要在重写系统重绘方法paint()时加入棋盘和棋子的绘制。这次我想说说画图板的重绘。
画图板重绘难在需要重绘的类型很多,比如说里面有矩形,园,直线之类的,所以我们要想办法将里面的图形加入一个队列中,这样在重绘时就
- Java的IO流
西蜀石兰
java
刚学Java的IO流时,被各种inputStream流弄的很迷糊,看老罗视频时说想象成插在文件上的一根管道,当初听时觉得自己很明白,可到自己用时,有不知道怎么代码了。。。
每当遇到这种问题时,我习惯性的从头开始理逻辑,会问自己一些很简单的问题,把这些简单的问题想明白了,再看代码时才不会迷糊。
IO流作用是什么?
答:实现对文件的读写,这里的文件是广义的;
Java如何实现程序到文件
- No matching PlatformTransactionManager bean found for qualifier 'add' - neither
林鹤霄
java.lang.IllegalStateException: No matching PlatformTransactionManager bean found for qualifier 'add' - neither qualifier match nor bean name match!
网上找了好多的资料没能解决,后来发现:项目中使用的是xml配置的方式配置事务,但是
- Row size too large (> 8126). Changing some columns to TEXT or BLOB
aigo
column
原文:http://stackoverflow.com/questions/15585602/change-limit-for-mysql-row-size-too-large
异常信息:
Row size too large (> 8126). Changing some columns to TEXT or BLOB or using ROW_FORMAT=DYNAM
- JS 格式化时间
alxw4616
JavaScript
/**
* 格式化时间 2013/6/13 by 半仙
[email protected]
* 需要 pad 函数
* 接收可用的时间值.
* 返回替换时间占位符后的字符串
*
* 时间占位符:年 Y 月 M 日 D 小时 h 分 m 秒 s 重复次数表示占位数
* 如 YYYY 4占4位 YY 占2位<p></p>
* MM DD hh mm
- 队列中数据的移除问题
百合不是茶
队列移除
队列的移除一般都是使用的remov();都可以移除的,但是在昨天做线程移除的时候出现了点问题,没有将遍历出来的全部移除, 代码如下;
//
package com.Thread0715.com;
import java.util.ArrayList;
public class Threa
- Runnable接口使用实例
bijian1013
javathreadRunnablejava多线程
Runnable接口
a. 该接口只有一个方法:public void run();
b. 实现该接口的类必须覆盖该run方法
c. 实现了Runnable接口的类并不具有任何天
- oracle里的extend详解
bijian1013
oracle数据库extend
扩展已知的数组空间,例:
DECLARE
TYPE CourseList IS TABLE OF VARCHAR2(10);
courses CourseList;
BEGIN
-- 初始化数组元素,大小为3
courses := CourseList('Biol 4412 ', 'Psyc 3112 ', 'Anth 3001 ');
--
- 【httpclient】httpclient发送表单POST请求
bit1129
httpclient
浏览器Form Post请求
浏览器可以通过提交表单的方式向服务器发起POST请求,这种形式的POST请求不同于一般的POST请求
1. 一般的POST请求,将请求数据放置于请求体中,服务器端以二进制流的方式读取数据,HttpServletRequest.getInputStream()。这种方式的请求可以处理任意数据形式的POST请求,比如请求数据是字符串或者是二进制数据
2. Form
- 【Hive十三】Hive读写Avro格式的数据
bit1129
hive
1. 原始数据
hive> select * from word;
OK
1 MSN
10 QQ
100 Gtalk
1000 Skype
2. 创建avro格式的数据表
hive> CREATE TABLE avro_table(age INT, name STRING)STORE
- nginx+lua+redis自动识别封解禁频繁访问IP
ronin47
在站点遇到攻击且无明显攻击特征,造成站点访问慢,nginx不断返回502等错误时,可利用nginx+lua+redis实现在指定的时间段 内,若单IP的请求量达到指定的数量后对该IP进行封禁,nginx返回403禁止访问。利用redis的expire命令设置封禁IP的过期时间达到在 指定的封禁时间后实行自动解封的目的。
一、安装环境:
CentOS x64 release 6.4(Fin
- java-二叉树的遍历-先序、中序、后序(递归和非递归)、层次遍历
bylijinnan
java
import java.util.LinkedList;
import java.util.List;
import java.util.Stack;
public class BinTreeTraverse {
//private int[] array={ 1, 2, 3, 4, 5, 6, 7, 8, 9 };
private int[] array={ 10,6,
- Spring源码学习-XML 配置方式的IoC容器启动过程分析
bylijinnan
javaspringIOC
以FileSystemXmlApplicationContext为例,把Spring IoC容器的初始化流程走一遍:
ApplicationContext context = new FileSystemXmlApplicationContext
("C:/Users/ZARA/workspace/HelloSpring/src/Beans.xml&q
- [科研与项目]民营企业请慎重参与军事科技工程
comsci
企业
军事科研工程和项目 并非要用最先进,最时髦的技术,而是要做到“万无一失”
而民营科技企业在搞科技创新工程的时候,往往考虑的是技术的先进性,而对先进技术带来的风险考虑得不够,在今天提倡军民融合发展的大环境下,这种“万无一失”和“时髦性”的矛盾会日益凸显。。。。。。所以请大家在参与任何重大的军事和政府项目之前,对
- spring 定时器-两种方式
cuityang
springquartz定时器
方式一:
间隔一定时间 运行
<bean id="updateSessionIdTask" class="com.yang.iprms.common.UpdateSessionTask" autowire="byName" />
<bean id="updateSessionIdSchedule
- 简述一下关于BroadView站点的相关设计
damoqiongqiu
view
终于弄上线了,累趴,戳这里http://www.broadview.com.cn
简述一下相关的技术点
前端:jQuery+BootStrap3.2+HandleBars,全站Ajax(貌似对SEO的影响很大啊!怎么破?),用Grunt对全部JS做了压缩处理,对部分JS和CSS做了合并(模块间存在很多依赖,全部合并比较繁琐,待完善)。
后端:U
- 运维 PHP问题汇总
dcj3sjt126com
windows2003
1、Dede(织梦)发表文章时,内容自动添加关键字显示空白页
解决方法:
后台>系统>系统基本参数>核心设置>关键字替换(是/否),这里选择“是”。
后台>系统>系统基本参数>其他选项>自动提取关键字,这里选择“是”。
2、解决PHP168超级管理员上传图片提示你的空间不足
网站是用PHP168做的,反映使用管理员在后台无法
- mac 下 安装php扩展 - mcrypt
dcj3sjt126com
PHP
MCrypt是一个功能强大的加密算法扩展库,它包括有22种算法,phpMyAdmin依赖这个PHP扩展,具体如下:
下载并解压libmcrypt-2.5.8.tar.gz。
在终端执行如下命令: tar zxvf libmcrypt-2.5.8.tar.gz cd libmcrypt-2.5.8/ ./configure --disable-posix-threads --
- MongoDB更新文档 [四]
eksliang
mongodbMongodb更新文档
MongoDB更新文档
转载请出自出处:http://eksliang.iteye.com/blog/2174104
MongoDB对文档的CURD,前面的博客简单介绍了,但是对文档更新篇幅比较大,所以这里单独拿出来。
语法结构如下:
db.collection.update( criteria, objNew, upsert, multi)
参数含义 参数  
- Linux下的解压,移除,复制,查看tomcat命令
y806839048
tomcat
重复myeclipse生成webservice有问题删除以前的,干净
1、先切换到:cd usr/local/tomcat5/logs
2、tail -f catalina.out
3、这样运行时就可以实时查看运行日志了
Ctrl+c 是退出tail命令。
有问题不明的先注掉
cp /opt/tomcat-6.0.44/webapps/g
- Spring之使用事务缘由(3-XML实现)
ihuning
spring
用事务通知声明式地管理事务
事务管理是一种横切关注点。为了在 Spring 2.x 中启用声明式事务管理,可以通过 tx Schema 中定义的 <tx:advice> 元素声明事务通知,为此必须事先将这个 Schema 定义添加到 <beans> 根元素中去。声明了事务通知后,就需要将它与切入点关联起来。由于事务通知是在 <aop:
- GCD使用经验与技巧浅谈
啸笑天
GC
前言
GCD(Grand Central Dispatch)可以说是Mac、iOS开发中的一大“利器”,本文就总结一些有关使用GCD的经验与技巧。
dispatch_once_t必须是全局或static变量
这一条算是“老生常谈”了,但我认为还是有必要强调一次,毕竟非全局或非static的dispatch_once_t变量在使用时会导致非常不好排查的bug,正确的如下: 1
- linux(Ubuntu)下常用命令备忘录1
macroli
linux工作ubuntu
在使用下面的命令是可以通过--help来获取更多的信息1,查询当前目录文件列表:ls
ls命令默认状态下将按首字母升序列出你当前文件夹下面的所有内容,但这样直接运行所得到的信息也是比较少的,通常它可以结合以下这些参数运行以查询更多的信息:
ls / 显示/.下的所有文件和目录
ls -l 给出文件或者文件夹的详细信息
ls -a 显示所有文件,包括隐藏文
- nodejs同步操作mysql
qiaolevip
学习永无止境每天进步一点点mysqlnodejs
// db-util.js
var mysql = require('mysql');
var pool = mysql.createPool({
connectionLimit : 10,
host: 'localhost',
user: 'root',
password: '',
database: 'test',
port: 3306
});
- 一起学Hive系列文章
superlxw1234
hiveHive入门
[一起学Hive]系列文章 目录贴,入门Hive,持续更新中。
[一起学Hive]之一—Hive概述,Hive是什么
[一起学Hive]之二—Hive函数大全-完整版
[一起学Hive]之三—Hive中的数据库(Database)和表(Table)
[一起学Hive]之四-Hive的安装配置
[一起学Hive]之五-Hive的视图和分区
[一起学Hive
- Spring开发利器:Spring Tool Suite 3.7.0 发布
wiselyman
spring
Spring Tool Suite(简称STS)是基于Eclipse,专门针对Spring开发者提供大量的便捷功能的优秀开发工具。
在3.7.0版本主要做了如下的更新:
将eclipse版本更新至Eclipse Mars 4.5 GA
Spring Boot(JavaEE开发的颠覆者集大成者,推荐大家学习)的配置语言YAML编辑器的支持(包含自动提示,