- flutter知识点
ZhDan91
flutter
#时隔4年了#4年前用flutter开发海外项目和医疗项目。绘制界面的语法与html还是较类似的。把这些封印的记忆和技术回顾一下,最开始是开发Android出身的,所以开发起flutter来依旧是用的androidstudio开发工具。整理下用到的知识点:整理来源:flutter面试题——基础篇(1)-CSDN博客1、Dart是单线程的。在单线程中以消息循环来运行的。其中敖汉两个任务队列。一个是微
- 数据分析常用指标名词解释及计算公式
走过冬季
学习笔记数据分析大数据
数据分析中有大量常用指标,它们帮助我们量化业务表现、用户行为、产品健康度等。下面是一些核心指标的名词解释及计算方式,按常见类别分类:一、流量与用户规模指标页面浏览量名词解释:用户访问网站或应用时,每次加载或刷新一个页面就算一次PV。它衡量的是页面被打开的总次数。计算方式:PV=∑(所有页面被加载的次数)(通常由埋点或日志直接统计)独立访客数名词解释:在特定时间范围内(如一天、一周、一月),访问网站
- 解码服务竞争力,医疗美容机构如何在红海中突围?
湖南群狼调研
神秘顾客湖南群狼市场调查暗访长沙群狼调用
医疗与美容行业的竞争早已进入“贴身肉搏”阶段,(武汉问卷调查公司)(美容行业神秘顾客)(长沙市场调研公司)而决定胜负的核心,藏在患者挂完号后的等待里,藏在医生解释病情的语气里,藏在检查报告递出时的说明里——这些看不见的服务细节,正是拉开差距的关键。湖南群狼市场调查,17年专注医疗与美容机构暗访服务,以第三方的客观视角,为机构解码服务竞争力的密码,助您在激烈竞争中撕开市场缺口。一:17年行业洞察,暗
- 目标检测(object detection)
加油吧zkf
目标检测目标检测人工智能计算机视觉
目标检测作为计算机视觉的核心技术,在自动驾驶、安防监控、医疗影像等领域发挥着不可替代的作用。本文将系统讲解目标检测的概念、原理、主流模型、常见数据集及应用场景,帮助读者构建对这一技术的完整认知。一、目标检测的核心概念目标检测(ObjectDetection)是指在图像或视频中自动定位并识别出所有感兴趣的目标的技术。它需要解决两个核心问题:分类(Classification):确定图像中每个目标的类
- 不同行业的 AI 数据安全与合规实践:7 大核心要点全解析
观熵
人工智能DeepSeek私有化部署
不同行业的AI数据安全与合规实践:7大核心要点全解析关键词AI数据安全、行业合规、私有化部署、数据分类分级、国产大模型、隐私保护、DeepSeek部署摘要随着国产大模型在金融、医疗、政务、教育等关键领域的深入部署,AI系统对数据安全与行业合规提出了更高要求。本文结合DeepSeek私有化部署实战,系统梳理当前各行业主流的数据安全合规标准与落地策略,从数据分类分级、访问控制、审计追踪到敏感信息识别与
- 微算法科技的前沿探索:量子机器学习算法在视觉任务中的革新应用
MicroTech2025
量子计算算法
在信息技术飞速发展的今天,计算机视觉作为人工智能领域的重要分支,正逐步渗透到我们生活的方方面面。从自动驾驶到人脸识别,从医疗影像分析到安防监控,计算机视觉技术展现了巨大的应用潜力。然而,随着视觉任务复杂度的不断提升,传统机器学习算法在处理大规模、高维度数据时遇到了计算瓶颈。在此背景下,量子计算作为一种颠覆性的计算模式,以其独特的并行处理能力和指数级增长的计算空间,为解决这一难题提供了新的思路。微算
- 网络安全行业核心人才需求与职业发展路径
Gappsong874
安全网络安全程序人生职场和发展
在数字化浪潮席卷全球的今天,数据已成为驱动经济、重塑社会的核心资产。从智慧城市到工业互联网,从移动支付到远程医疗,数字技术深度融入人类生活的每个角落。然而,技术赋能的另一面是风险的指数级放大——网络攻击手段日益复杂,数据泄露事件频发,关键基础设施面临瘫痪威胁,甚至国家安全与公民隐私也暴露在未知风险之中。在此背景下,网络安全早已超越技术范畴,成为关乎国家战略、企业存续与个人权益的“数字生命线”。无论
- 使用HarmonyOS 5和CodeGenie辅助工具开发鸿蒙运动健康类应用的项目总结
哼唧唧_
CodeGenie运动健康HarmonyOS5harmonyos华为
一、项目背景与目标随着鸿蒙生态在穿戴设备、智能家居领域的快速扩展,我团队基于HarmonyOS5操作系统,开发了一款面向运动健康场景的智能应用——“Harmony健康伴侣”。项目采用华为官方推出的智能编程助手CodeGenie进行辅助开发,旨在验证CodeGenie在提升鸿蒙应用开发效率与质量方面的实际效果。二、核心功能实现该应用深度融合HarmonyOS分布式能力,支持跨设备无缝协同,主要功能包
- 数据分析框架和方法
XiaoQiong.Zhang
人工智能
一、核心分析框架(TheBigPictureFrameworks)描述性分析(WhatHappened?)目的:了解过去发生了什么,描述现状,监控业务健康。核心工作:汇总、聚合、计算基础指标(KPI),生成报表和仪表盘。常用方法/指标:计数/求和/平均值/中位数:DAU/MAU,总销售额,客单价等。比率:转化率,点击率,流失率,毛利率等。分布:用户活跃度分布、订单金额分布、地域分布等。常用于理解群
- 服务实现99.99%高可用的核心措施
在分布式系统中,高可用性(HA)是衡量服务可靠性的核心指标。99.99%的可用性意味着系统每年的停机时间不超过约52.6分钟,这对金融交易、电信服务等关键业务至关重要。一、冗余设计与故障转移原理:通过冗余部署消除单点故障,确保部分节点故障时服务仍可用。故障转移机制自动将流量切换至健康节点,缩短服务中断时间。Java服务实现:集群部署:使用SpringCloudAlibaba或Dubbo构建微服务集
- AI在垂直领域的深度应用:医疗、金融与自动驾驶的革新之路
AI在垂直领域的深度应用:医疗、金融与自动驾驶的革新之路一、医疗领域:AI驱动的精准诊疗与效率提升1.医学影像诊断AI算法通过深度学习技术,已实现对X光、CT、MRI等影像的快速分析,辅助医生检测癌症、骨折等疾病。例如,GoogleDeepMind的AI系统在乳腺癌筛查中,误检率比人类专家低9.4%;中国的推想医疗AI系统可在20秒内完成肺部CT扫描分析,为急诊救治争取黄金时间。2.药物研发传统药
- 医疗金融预测与语音识别中的模型优化及可解释性技术突破
智能计算研究中心
其他
内容概要随着人工智能技术的纵深发展,模型优化与可解释性技术正在重塑医疗诊断、金融预测及语音识别领域的应用范式。在医疗领域,基于自适应学习的动态参数调整机制,结合迁移学习的跨场景知识复用,显著提升了疾病筛查模型的泛化能力;而金融预测场景中,联邦学习框架通过分布式数据协作,在保障隐私安全的前提下,实现了风险预测模型的多维度优化。语音识别领域则依托边缘计算架构,将模型压缩技术与实时推理引擎结合,有效解决
- 【数据分析】多数据集网络分析:探索健康与退休研究中的变量关系
生信学习者1
数据分析(2025版)数据分析r语言数据挖掘数据可视化
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!文章目录介绍加载R包数据下载导入数据数据预处理函数网络分析画图保存图片总结系统信息介绍在医学和社会科学研究中,理解多个变量之间的复杂关系对于揭示潜在的病理生理机制和社会行为模式至关重要。本文介绍了一种基于R语言的网络分析方法,用于探索HRS(健康与退休研究)及其类似研究(CHARLS、ELSA、MHAS、SHARE)中的变
- 普通人生存指南
程序员
普通人生存指南基于对阶层博弈本质和底层生存策略的分析,结合当前社会运行规则,以下是针对底层百姓的生存指南:一、政策收割的本质:阶层利益分配的游戏底层收割闭环债务绑定:房贷、消费贷、信用卡等债务工具将普通人锁定在劳动还贷循环中,透支未来30年劳动力;刚需消费:教育(鸡娃)、医疗、房产被设计为必选消费,掏空家庭储蓄;制度性转移支付:养老金缺口、地方债最终通过通胀/税收转嫁到底层。中产收割陷阱理财暴雷(
- Spring AI 项目实战(十五):DeepSeek驱动的智能问诊系统实战-从0到1构建AI医疗问诊平台(附完整源码)
程序员岳彬
SpringAI人工智能springjavaai后端
智能问诊系列文章序号文章名称1SpringAI项目实战(一):SpringAI核心模块入门2SpringAI项目实战(二):SpringBoot+AI+DeepSeek深度实战(附完整源码)3
- 小型化与低功耗工业数据采集卡的在哪些行业有强劲需求?
番茄老夫子
数据采集卡
小型化与低功耗工业数据采集卡在汽车、医疗、能源等多个行业有着强劲需求,以下是具体介绍:汽车行业:在汽车电子系统中,如电池管理系统、电机控制和自动驾驶系统等,需要采集大量传感器数据。小型化低功耗的数据采集卡可轻松嵌入汽车内部紧凑空间,且能在车辆长时间运行中保持低能耗,例如用于实时监控车载网络信号,优化ECU性能,同时满足汽车对零部件小型化、轻量化以及节能的要求。医疗行业:医疗设备如呼吸机、心脏监测仪
- 【HTML网页】智能健康监测——全方位健康管理专家(包含网页源代码)
智能健康监测分析系统智能健康监测分析系统是一种基于物联网、大数据、人工智能等技术的综合性健康管理解决方案。它具有以下六大核心功能:实时监测系统通过智能传感器和可穿戴设备,实时采集用户的生理数据,例如心率、血压、血氧饱和度、血糖水平和睡眠质量等,确保用户随时掌握自己的身体状况。健康数据分析利用人工智能和大数据分析技术,系统对采集到的数据进行处理和分析,提取有价值的健康信息,如心率变异性、呼吸频率等,
- 新型BERT勒索软件肆虐:多线程攻击同时针对Windows、Linux及ESXi系统
趋势科技安全分析师发现,一个代号为BERT(内部追踪名WaterPombero)的新型勒索软件组织正在亚洲、欧洲和美国展开多线程攻击。该组织主要针对医疗保健、科技和会展服务行业,其活动范围显示其正成为勒索软件生态中的新兴威胁力量。攻击技术分析在Windows系统中,BERT通过PowerShell加载器(start.ps1)实施攻击,该脚本会执行以下操作:禁用WindowsDefender防火墙和
- 医疗票据查验原理-财政票管理-发票查验接口流程解析
wt_cs
发票识别大数据人工智能
在医疗行业数字化转型的背景下,医疗发票的查验与识别已成为医疗机构、企事业单位及金融机构财务管理的重要环节。医疗发票作为医疗服务消费的重要凭证,其真实性与准确性直接关系到医保报销、财务审计及税务管理等多个环节。随着医疗票据电子化进程的加速,传统人工查验方式已难以满足海量票据处理的需求,医疗票据查验接口与医疗票据识别接口应用而生。传统人工查验面临以下几大挑战:1、票据量大、人工处理效率低:通过人工核验
- 居家医养平台的数据加密与审计要点
辽宁龙慧网络科技
团队开发居家医养服务平台智慧养老平台APP开发数据安全
居家医养平台涉及大量敏感健康数据(如生理指标、电子病历、用户行为记录),其数据加密与审计需满足医疗合规性(如HIPAA、GDPR、中国《个人信息保护法》)和技术可靠性的双重要求。以下是具体的技术实现框架与合规策略:一、数据加密核心要求1.传输层加密技术方案:TLS1.3:强制所有API、Web及移动端通信使用TLS1.3协议,禁用弱加密套件(如RC4、SHA-1)。国密算法支持:针对中国市场,集成
- 【字节跳动】数据挖掘面试题0010:解释全国人均收入下降,各省份人均收入增加的现象,属于辛普森悖论(开放性问题)
言析数智
数据挖掘常见面试题辛普森悖论局部与整体分析差异归因数据分析面试题
文章大纲一、辛普森悖论的核心定义二、现象成因:加权平均中的“权重偏移”三、数学逻辑与案例说明1.数学表达式2.具体案例四、辛普森悖论的本质:忽略“混杂因素”的影响五、生活中常见的辛普森悖论案例及应对策略1.医疗疗法效果评估2.大学录取率的性别偏差3.篮球运动员投篮效率4.公司员工绩效与部门规模如何利用辛普森悖论?(数据分析中的价值)六、总结全国人均收入下降而各省份人均收入增加的现象,确实属于辛普森
- 数据挖掘:从理论到实践的深度探索
代码老y
数据挖掘人工智能
在当今数字化时代,数据已经成为企业决策的重要依据。数据挖掘作为一门从大量数据中提取有价值信息的技术,已经广泛应用于各个领域,如金融、医疗、零售、互联网等。本文将深入探讨数据挖掘的基本概念、主要技术和实际应用案例,帮助读者更好地理解数据挖掘的价值和应用。一、数据挖掘的基本概念(一)数据挖掘的定义数据挖掘(DataMining)是从大量数据中提取有用信息的过程。它结合了统计学、机器学习、数据库技术和人
- Elasticsearch入门(二):document数据格式 、简单的es restful api
m0_50134014
Elasticsearchelasticsearchjava
目录一、document数据格式1.1面向文档的搜索分析引擎1.1.1对象数据存储到数据库中1.1.2对象数据存储到ES中二、电商网站商品管理案例背景介绍2.1简单的集群管理2.1.1快速检查集群的健康状况:`GET/_cat/health?v`2.1.2快速查看集群中有哪些索引:`GET/_cat/indices?v`2.1.3创建索引:`PUT/test_index?pretty`2.1.4删
- 机器学习手写字体识别系统:技术演进与应用实践
万能小贤哥
机器学习人工智能
引言:手写字体识别的技术定位与价值在信息处理领域,人工录入手写文本的低效性与机器识别的高效性形成鲜明对比。例如,医疗处方的人工处理需约5分钟/张,而采用手写字体识别技术可将时间缩短至10秒/张,显著提升处理效率。作为计算机视觉与人工智能的重要分支,手写字体识别技术通过将手写文本转换为可编辑电子文本,不仅大幅减少人工输入时间和错误,降低人工处理成本,还能在大量数据处理时保持高于人工录入的准确性,是人
- MCP协议采用客户端-服务器架构的深层逻辑与架构对比分析
一、架构选择的核心动因1.功能解耦与安全边界的强制性要求MCP采用客户端-服务器(C/S)架构的核心动因源于AI系统与真实世界交互的特殊性:权限分层控制:主机(Host)作为协调层,严格划分客户端(Client)与服务端(Server)的操作权限。例如医疗场景中,诊断模型(Client)仅能通过医院授权的主机访问脱敏病历服务器,无法直接接触原始数据。沙箱隔离需求:每个MCP服务器运行在独立容器中(
- 微服务世界的“导航仪”!Spring Cloud五大注册中心选型指南,从此不再迷路!
码农技术栈
微服务微服务springcloud架构springbootjava后端
引言:为什么微服务需要“导航仪”?想象一下,你走进一座巨大的迷宫(微服务集群),里面有成百上千个房间(服务实例),每个房间都在动态变化位置(服务扩缩容)。注册中心就像迷宫里的导航仪,实时记录所有房间的位置,告诉你怎么最快找到目标。没有它?你可能会永远迷失在“服务调用”的迷宫里!注册中心的核心作用服务注册:服务启动时,主动上报自己的地址和状态。服务发现:调用方通过注册中心查询目标服务的位置。健康监测
- 从实践到自动化:现代运维管理的转型与挑战
运维
从实践到自动化:现代运维管理的转型与挑战在信息化快速发展的今天,企业IT系统的稳定性、可用性和安全性已成为衡量公司竞争力的重要因素之一。运维(IT运维)管理作为确保企业IT系统健康、稳定运行的关键职能,一直是企业技术团队关注的重点。然而,随着业务的复杂化、用户需求的变化以及技术的不断创新,传统的运维方式已逐渐无法满足企业对于高效、高可用、高安全的需求。如何提升运维效率、减少人为错误、提高运维系统的
- 模型融合与人机协同:构建人机共生的智能未来
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍在科技日新月异的今天,人工智能(AI)已经成为了我们生活中不可或缺的一部分。从智能手机,到自动驾驶汽车,再到医疗诊断,AI的应用已经渗透到了我们生活的方方面面。然而,尽管AI的发展已经取得了显著的成就,但是我们仍然面临着一个重大的挑战:如何让AI系统更好地理解和适应人类的需求,以实现人机共生的智能未来。为了解决这个问题,越来越多的研究者开始探索模型融合和人机协同的方法。2.核心概念与联
- 心理健康语音分析AI模型:开启心理评估新时代
AI大模型应用实战
人工智能语音识别ai
心理健康语音分析AI模型:开启心理评估新时代关键词:心理健康评估、语音信号处理、情感计算、AI模型、多模态融合摘要:传统心理评估依赖量表问卷和人工观察,存在主观性强、效率低、难以实时监测等局限。本文将带您走进“心理健康语音分析AI模型”的世界,从基础概念到核心技术,从算法原理到实战案例,揭秘AI如何通过“听声音”读懂心理状态,开启心理评估的智能化新时代。背景介绍目的和范围心理健康问题已成为全球公共
- 跨机构医疗影像解析的协议协同架构——基于MCP协议的“巴比伦塔困境“突破
百态老人
架构
在医疗影像领域,不同医疗机构间因系统异构性形成的"巴比伦塔困境",本质上是协议标准碎片化与数据语义隔阂的叠加效应。通过融合MCP协议、DICOM标准扩展与新型云架构,协和医院PACS系统与301医院AI模型间的直接解析得以实现。这一技术突破包含以下核心创新层级:一、协议转换层的架构创新1.多协议语义网关基于MCP协议构建的智能协议转换层,实现不同DICOM实现版本的动态适配:
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那