网关限流实例

描述

限流是指将处理请求数限定在单位时间的阀值内。常用的限流算法固定时间窗口限流算法和滑动时间窗口限流算法。固定时间窗口限流算法实现有计数器、漏桶、令牌桶。

比较

计数器是在缓存中增加计数器,每个请求加1,如果计数器大于阀值则拒绝请求。比如API元数据100每秒100次请求。第一个时间窗口的最后10ms有90次,第二个时间窗口的最前10ms有90次。那这20ms中的请求数已经超过100次,而这些请求限流失败。这种现象称为突刺现象。

漏桶是创建请求阀值大小的容器,请求过来后都放入容器中。如果容器满了则拒绝请求。另一端匀速的从容器中取出请求并处理。如果请求数波动大时。第一个时间窗口中大量请求过来,出现大量拒绝请求,而第二个时间窗口少量请求,就会对资源利用率少。

令牌桶创建一个盛放令牌的容器,以固定速率生成令牌。请求过来后去容器中取出令牌。如果令牌没有则请求拒绝。这个方法比较常用,可以解决流量波动情况。

简单实现

计数器算法实现简单分布式流控。使用redis做全局流控,jvm缓存做流控计数器。其中redis工具类使用Jedis。

思路:流控阀值初始化加载到jvm缓存,jvm进程中判断是否达到流控阀值,没有就将请求数加一。异步从redis中减去jvm缓存中请求数,这时请求数不清零。jvm缓存异步更新时将请求数置为零。

缺陷:
1.异步更新全局流控,不能精准控制流控。
2.时间窗口中无法避免突刺现象。


public class FlowControl {

    private static final ExecutorService refreshPool = Executors.newFixedThreadPool(1);

    private static final ScheduledExecutorService initWriteBackPool = Executors.newScheduledThreadPool(1);

    private static final ScheduledExecutorService initPool = Executors.newScheduledThreadPool(1);

    private static final LoadingCache> cache = CacheBuilder.newBuilder()
            .refreshAfterWrite(200, TimeUnit.MILLISECONDS)
            .expireAfterAccess(10, TimeUnit.MINUTES)
            .build(new CacheLoader>() {

                @Override
                public Pair load(String key) throws Exception {

                    String value = RedisCli.command(jedis -> jedis.get(key));

                    LongAdder threshold = new LongAdder();
                    threshold.add(Long.parseLong(value));

                    return new Pair<>(threshold, new LongAdder());
                }

                @Override
                public ListenableFuture> reload(String key, Pair oldValue) throws Exception {
                    //return super.reload(key, oldValue);
                    System.out.println(key);
                    ListenableFutureTask> task = ListenableFutureTask.create(() -> load(key));
                    refreshPool.execute(task);
                    return task;
                }
            });

    static {
        initWriteBackPool.scheduleWithFixedDelay(() -> {
            System.out.println("write back");

            Jedis jedis = RedisCli.getJedis();
            Pipeline pipelined = jedis.pipelined();

            try {
                ConcurrentMap> map = cache.asMap();
                Iterator iterator = map.keySet().iterator();

                while (iterator.hasNext()) {
                    String next = iterator.next();
                    Pair pair = cache.get(next);

                    if (pair.getValue().longValue() > 0) {
                        pipelined.decrBy(next, pair.getValue().longValue());
                    }
                }

                pipelined.close();
                RedisCli.returnJedis(jedis);
            } catch (ExecutionException e) {
                e.printStackTrace();
            }

        }, -1, 100, TimeUnit.MILLISECONDS);


        initPool.scheduleAtFixedRate(() -> {
            RedisCli.command(jedis -> {
                return jedis.set("sayHello", "50");
            });

        }, -1, 1, TimeUnit.SECONDS);

    }

    public static void flowControl(String name, int i) {
        try {
            Pair pair = cache.get(name);
            if (pair != null) {
                LongAdder threshold = pair.getKey();
                LongAdder flowTime = pair.getValue();

                if (threshold.longValue() > flowTime.longValue()) {
                    flowTime.increment();
                    System.out.println(Thread.currentThread().getName() + "_流量控制_" + "request_" + cache.get(name).getValue());
                }
            }
        } catch (ExecutionException e) {
            e.printStackTrace();
        }
    }

测试代码

public static void main(String[] args) {

    String name = "sayHello";

    ScheduledExecutorService testPool1 = Executors.newScheduledThreadPool(10);
    testPool1.scheduleAtFixedRate(() -> {
        for (int i = 0; i < 100; i++) {
            final int a = i;
            FlowControl.flowControl(name, a);
        }
    }, -1, 1, TimeUnit.SECONDS);

    ScheduledExecutorService testPool2 = Executors.newScheduledThreadPool(10);
    testPool2.scheduleAtFixedRate(() -> {
        for (int i = 0; i < 100; i++) {
            final int a = i;
            FlowControl.flowControl(name, a);
        }
    }, -1, 1, TimeUnit.SECONDS);

}

引用

https://www.iteye.com/blog/jinnianshilongnian-2305117
https://tech.youzan.com/api-gateway-in-practice/
浅析如何设计一个亿级网关
https://www.jianshu.com/p/76cc8ba5ca91
https://wetest.qq.com/lab/view/320.html?from=content_qcloud
https://github.com/abbshr/abbshr.github.io/issues/52
https://www.changping.me/2019/03/30/distributed-servicegovernance-flowcontrol-2/

你可能感兴趣的:(网关限流实例)