揪出MySQL磁盘消耗迅猛的真凶

Part1:写在最前

当一张单表10亿数据量的表放在你面前,你将面临着什么?

Part2:背景介绍

为了提升数据库资源利用率,一个实例中,在不互相影响,保证业务高效的前提下,我们会将同一个大业务下的不同小业务放在一个实例中,我们的磁盘空间是2T,告警阈值为当磁盘剩余空间10%时发出短信告警。笔者接到某业务主库磁盘剩余空间告警的短信后,经过一番查探,发现从几天前开始,有一张表的数据量增长非常快,而在之前,磁盘空间下降率还是较为平缓的,该表存在大字段text,其大批量写入更新,导致磁盘消耗迅猛。

我们首先来看下该表的表结构:

与业务了解得知,该表几乎没有删除操作,由于数据量过大,我们模糊使用auto_increment来作为表数量预估值,避免count()操作对线上造成的影响。

Part3:案例分析

与业务沟通了解后得知,该表可以清理4个月以前的老旧数据,因此可以使用delete的方式清除,而我们通过表结构可以看出,该表在设计之初,并没有对updateTime列创建索引,因此以时间为范围去进行delete操作,这显然是不合理的。

经过与业务协商,我们确定了可以将id作为删除条件,删除id<2577754125之前的数据

也就是说,此时的delete语句变为了:

且不说delete操作有多慢,直接执行这样的SQL也会有诸如长事务告警,从库大量延迟等并发症产生,因此绝不能在生产库上进行这种大批量的危险操作。

实战

Part1:监控

从监控图我们能看出磁盘下降的趋势:

Part2:实战操作

我们通过查看binlog发现,集群中binlog的刷新量虽不说像笔者上个案例那样多么迅猛,但也绝不是老实本分


我们可以看出,在高峰期间,binlog的刷新间隔最短达到了2分钟写满1.1GB的binlog。因此笔者与业务沟通后,首先清理binlog日志,将 expire_logs_days从7天调整至3天。

同时,清理一些能够清理的无用日志、废旧文件等等。

我们也能在上面的监控图看到在做完这些清理操作后,磁盘空间剩余从4%提升至12%,但随后依旧保持原有速率下降。

Part3:pt-archiver

真凶找到了,我们怎么办,别急,使用pt-archiver。pt-archiver工具是percona工具集的一员,是归档MySQL大表数据的最佳轻量级工具之一。他可以实现分chunk分批次归档和删除数据,能避免一次性操作大量数据带来的各种问题。

闲话不多说,一向本着实战的原则,我们直接上命令:

简单说下常用的参数:

Warning:警告这里就又有个小坑了,的确,我们使用bulk-delete参数能够增加删除速率,相比不使用bulk-delete速度能够提升10倍左右,但问题也就显现出来,在使用上述命令期间,发现binlog每秒写入量激增,这又回到了我们说的,哪些情况会导致binlog转为row格式。

首先我们需要了解到使用bulk-delete时,sql是如下执行的:

如果您之前关注过笔者的文章,应该知道,当使用了delete from xxx where xxx limit 语法时,会将binlog_format从mixed转为row,这样的话,删除的同时,binlog由于转为了row格式也在激增,这与我们的预期是不符的。

因此最终的命令为:


去掉了bulk-delete,这样的话就能够保证正常的delete,而不加limit,binlog不会转为row格式导致磁盘消耗继续激增。

对于Innodb引擎来说,delete操作并不会立即释放磁盘空间,新的数据会优先填满delete操作后的“空洞”,因此从监控来看就是磁盘不会进一步消耗了,说明我们的pt-archiver工具删除是有效的。

Part4:困惑

首先我们要知道,当你面对一张数据量庞大的表的时候,有些东西就会受限制,例如:

  1. 不能alter操作,因为这会阻塞dml操作。
  2. 对于本案例,空间本就不足,也不能使用pt-online工具来完成。

对于不能alter其实是比较要命的,比如开发要求在某个时间段尽快上线新业务,而新业务需要新增列,此时面对这么庞大的量级,alter操作会异常缓慢。

因此,笔者与研发沟通,尽快采用物理分表的方式解决这个问题,使用物理分表,清理表的操作就会很容易,无需delete,直接drop 老表就可以了。其次,物理分表让alter语句不会卡住太久,使用pt-online工具也不会一次性占据过多的磁盘空间诱发磁盘空间不足的告警。

再有就是迁移TiDB,TiDB相较MySQL更适合存储这类业务。

Part5:再谈binlog_format

我们选取其中高峰期的binlog发现其update操作转为了row格式,记录了所有列变更前后的所有信息,而binlog中并未出现update xxx limit这种操作,那又会是什么引发的row格式记录呢?

这里这篇文章又抛出一个新的案例,在官网那篇何时mixed转row格式中又一个没有记录的情况

官方文档:

我们这个案例中又出现了一个新的因素就是:

当表结构中存在多个唯一索引(包括主键id),本案例中存在主键和UNIQUE KEY `uk_mailNo`这个唯一索引,且使用了

这时,mysql binlog_format就会被转为row格式,这个内容也是记录在官网的其他章节:

https://dev.mysql.com/doc/refman/5.5/en/insert-on-duplicate.html

也就是说,只要业务解决了使用这种语法插入的话,磁盘空间下降迅猛的原因也能够缓解不少。我们统计发现,qps更高的其他业务中,binlog保留7天的磁盘消耗量在60GB

而该业务我们仅仅保留3天binlog,却依旧消耗了430GB的磁盘空间,这已经超过了我们整个2T磁盘空间的5分之一了。

——总结——

通过这个案例,我们能够了解到什么情况下binlog_format会由MIXED格式转为ROW格式,以及触发的一系列并发症和解决办法,还有pt工具pt-archiver的使用。由于笔者的水平有限,编写时间也很仓促,文中难免会出现一些错误或者不准确的地方,不妥之处恳请读者批评指正。喜欢笔者的文章,右上角点一波关注,谢谢!


最后:欢迎各位学习java和大数据的朋友们加入Java交流学习群: 721506929

点击链接加入群聊【java交流学习群】:https://jq.qq.com/?_wv=1027&k=5mH1lvO群内提供免费的架构资料还有:Java工程化、高性能及分布式、高性能、深入浅出。高架构。性能调优、Spring,MyBatis,Netty源码分析和大数据等多个知识点高级进阶干货的免费直播讲解 可以进来一起学习交流哦~





你可能感兴趣的:(数据库)