- 【免费收藏】清华大学DeepSeek使用手册合集 600页完整版
周师姐
AI写作学习人工智能pdf
DeepSeek资料链接:https://pan.quark.cn/s/c927326f70c5在人工智能席卷全球的当下,DeepSeek作为前沿深度学习技术,正推动着全面AI时代的到来。今日,特别为大家推荐《DeepSeek:从入门到精通》,本书由清华大学新闻与传播学院新媒体研究中心元宇宙文化实验室的余梦珑博士后团队精心编写。它深度解析DeepSeek的技术核心,详尽阐释其应用场景与操作方法,尤
- YOLOv12改进之A2(区域注意力)
清风AI
深度学习算法详解及代码复现深度学习机器学习计算机视觉人工智能算法
注意力回顾注意力机制作为深度学习领域的核心技术,已广泛应用于自然语言处理和计算机视觉等多个领域。在YOLOv12改进之A2中,注意力机制扮演着关键角色。已有研究成果包括:Transformer架构:引入了自注意力机制,有效捕捉输入序列中的长距离依赖关系。CBAM模块:提出了通道和空间注意力的结合,显著提升了图像分类和目标检测的性能。SENet:引入了通道注意力机制,通过自适应学习特征通道的重要性,
- Grok 3能否打破大模型的魔咒?
TGITCIC
AI-大模型的落地之道grokgrok3大模型小模型scalinglaw开源大模型
新模型旧魔咒Grok3的问世,仿佛是科技界的一声惊雷。面对老掉牙的大模型法则,大家不禁要问:这到底意味着什么?以前,一提深度学习就能引出一场血雨腥风,现如今却有人说“没钱也能玩”。这风浪可真是一波未平一波又起。也许这就是科技的魅力:一统江湖的法则瞬间瓦解。缩小与提升大模型不再是唯一的解决方案,大家发现,原来小模型也可以撬动市场。不过,面对如何提升模型的智商,各路英雄却依然不得不面对两个选择:大力度
- 深度学习_第二轮
Humingway
深度学习深度学习人工智能
损失函数对偏置和权重求导,x、y作为常量确实,当进行模型训练时,(x)和(y)分别代表输入特征和对应的输出值,它们以数据点对的形式存在,一个数据集中通常包含多对这样的数据。每一对((x_i),(y_i))代表了数据集中的一个样本。在计算损失函数的梯度(即关于权重的偏导数)时,需要考虑整个数据集中的所有样本。对于每个样本((x_i),(y_i)),我们计算其对损失函数的贡献,并通过求和或平均这些贡献
- 对深度学习中的基本概念—梯度的理解
Humingway
深度学习深度学习人工智能
本文讨论一下对“梯度”的理解。“梯度”是深度学习中基本又非常核心的概念,没有它就没有人工智能的今天。然而,即使抛开令人眼花缭乱的术语(比如sgd、ada、moment、adam)不谈,即使最简单的“梯度”本身,也值得讨论一下。1.提出问题该如何理解梯度?让我们结合具体的例子来体会一下。2.定义例子首先,我们定义一个简单的例子,来模拟一下深度学习的学习过程。已知:有一个正确的数据对(或者叫样本),(
- 《基于WebGPU的下一代科学可视化——告别WebGL性能桎梏》
Eqwaak00
matplotlibwebgl微服务架构云原生分布式
引言:科学可视化的算力革命当WebGL在2011年首次亮相时,它开启了浏览器端3D渲染的新纪元。然而面对当今十亿级粒子模拟、实时物理仿真和深度学习可视化需求,WebGL的架构瓶颈日益凸显。WebGPU作为下一代Web图形标准,通过显存直存、多线程渲染和计算着色器三大革新,将科学可视化性能提升至10倍以上。本文将深入解析如何利用WebGPU突破大规模数据渲染的极限。一、WebGPU核心架构解析1.1
- 自动驾驶---Perception之大模型应用
智能汽车人
自动驾驶人工智能机器学习
1背景自动驾驶感知(Perception)模块在自动驾驶系统中扮演着至关重要的角色,它负责收集、处理并理解车辆周围的环境信息。随着深度学习技术的快速发展,大模型也逐渐在自动驾驶感知模块中得到了广泛应用。本篇博客主要介绍大模型在感知模块的应用。前面也介绍过如下几篇Perception相关的文章,有兴趣的读者可以了解相关内容:《自动驾驶---Perception之IPM图和BEV图》《自动驾驶---P
- 基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
图像识别人工智能深度学习
一、介绍害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)","蜜蜂(bees)","甲虫(beetle)","毛虫(catterpillar)","蚯蚓(earthworms)","蜚蠊(earwig)","蚱蜢(grasshopper)","飞蛾(moth)","鼻涕虫(slug)","蜗牛
- 详解:Grok中文版 _Grok 3 国内中文版本在线使用
人工智能
GrokAI是由XAI公司推出的一款尖端人工智能系统。作为该公司核心技术之一,GrokAI专注于推动人工智能在各行各业的实际应用,尤其在数据分析、自然语言处理(NLP)、自动化决策、机器学习等领域表现出色。Grok的最大亮点在于其强大的数据处理能力。它能够高效地从大量复杂数据中提取有价值的信息,并做出精准预测。借助深度学习与强化学习等先进技术,GrokAI具备自我学习的能力,可以通过不断的训练来优
- 基于OpenCV的Java人脸识别系统设计与实现
小呀白呀兔
javaspringboot
基于OpenCV的Java人脸识别系统设计与实现1.引言随着计算机视觉技术的发展,人脸识别在安全监控、身份验证等领域得到了广泛应用。本文将详细介绍如何使用OpenCV库和Java语言构建一个简单的人脸识别系统。该系统能够从图像中检测人脸,并通过深度学习模型提取特征进行比对,最终输出相似度评分及置信度等级。2.环境搭建为了确保项目顺利运行,请按照以下步骤配置开发环境:安装JDK:确保已安装JavaD
- 智能教育:DeepSeek在个性化学习中的创新应用与代码实现
Evaporator Core
#DeepSeek快速入门DeepSeek进阶开发与应用#深度学习学习
教育是塑造未来的基石,而个性化学习则是现代教育的重要趋势。随着人工智能技术的飞速发展,教育领域正迎来一场深刻的变革。DeepSeek作为人工智能领域的领军者,正在通过其强大的技术能力,推动个性化学习的创新应用。本文将结合代码实现,深入探讨DeepSeek在个性化学习中的应用。一、个性化学习路径:从数据到洞察个性化学习的核心在于根据学生的学习数据,生成定制化的学习路径。DeepSeek通过深度学习算
- 大白话聊聊“深度学习”和“大模型”
程序员鬼鬼
深度学习人工智能AI编程AIGCchatgptai
1950年图灵发表论文《计算机器与智能》(ComputingMachineryandIntelligence),提出了“机器智能”(MachineIntelligent)的概念,并且提出了著名的“图灵测试”的方法来判断机器是否有智能。1956年,达特茅斯会议,“人工智能”(ArtificialIntelligent)概念被首次提出,人工智能作为一个学科开始被研究。科学家梦想着未来可以用复杂物理结构
- 【精华推荐】AI大模型学习必逛的十大顶级网站
大模型入门学习
人工智能学习大模型入门llama大模型教程大模型学习大模型
随着人工智能技术的快速发展,AI大模型(如GPT-3、BERT等)在自然语言处理、计算机视觉等领域取得了显著的成果。对于希望深入学习AI大模型的开发者和研究者来说,找到合适的学习资源至关重要。本文将为大家推荐十大必备网站,帮助你更好地理解和应用AI大模型。1.CourseraCoursera是一个在线学习平台,提供各类AI和机器学习课程,包括斯坦福大学的机器学习课程和深度学习专项课程。通过视频讲解
- 深度学习分类回归(衣帽数据集)
何仙鸟
深度学习分类回归
一、步骤1加载数据集fashion_minst2搭建classNeuralNetwork模型3设置损失函数,优化器4编写评估函数5编写训练函数6开始训练7绘制损失,准确率曲线二、代码导包,打印版本号:importmatplotlibasmplimportmatplotlib.pyplotasplt%matplotlibinlineimportnumpyasnpimportsklearnimport
- BP神经网络计算过程:从数学原理到实践优化
Acd_713
BP神经网络神经网络人工智能深度学习
引言:神经网络的时代意义与BP算法地位在深度学习重构人工智能边界的今天(Goodfellowetal.,2016),误差反向传播(Backpropagation,BP)算法作为神经网络训练的基石,其数学优雅性和工程实用性完美统一。本文将深入剖析BP神经网络的计算本质,揭示其如何在非线性空间中构建认知通道。第1章神经网络拓扑结构的数学建模1.1生物神经元到M-P模型的抽象跃迁McCulloch-Pi
- 成为LLM大师的必读书籍:这几本大模型书籍,详细到让你一篇文章就收藏足够
AGI大模型老王
产品经理大模型教程学习大模型人工智能LLM大模型书籍
以下是几本关于大模型和人工智能领域的经典书籍,它们各自具有独特的特点和适用人群:《深度学习》(DeepLearning)作者:伊恩·古德费洛(IanGoodfellow)、约书亚·本吉奥(YoshuaBengio)、亚伦·库维尔(AaronCourville)简介:《深度学习》是深度学习领域的经典之作,全面介绍了深度学习的基础知识、主要模型及其应用。书中详细讲解了神经网络、卷积神经网络、循环神经网
- 深度学习模型未来可能会在这些领域取得突破性进展
xinxiyinhe
人工智能深度学习人工智能深度学习模型深度学习
深度学习模型作为人工智能的核心技术之一,未来有望在多个领域取得突破性进展。以下是一些可能的方向:1.通用人工智能(AGI)目标:开发具有通用智能的模型,能够像人类一样处理多种任务。潜在突破:更强的推理和抽象能力,解决复杂问题。结合多模态数据(文本、图像、声音等)实现更全面的理解。自我学习和适应能力,减少对大量标注数据的依赖。2.医疗与生命科学目标:提升疾病诊断、药物研发和个性化治疗的水平。潜在突破
- 深度学习进阶:TensorFlow实战指南
ELSON麦香包
本文还有配套的精品资源,点击获取简介:《TensorFlow实战Google深度学习框架》详细指导读者学习TensorFlow,涵盖基础概念、数据流图、API使用、张量和变量操作,深度学习基础如CNN和RNN,以及自定义层和优化算法。书中还提供使用TensorFlow构建和训练深度学习模型的实例,包括AlexNet、VGG、ResNet以及LSTM和GRU,并通过图像分类和文本情感分析等实战案例,
- Python深度学习之路:TensorFlow与PyTorch对比
步入烟尘
Python超入门指南全册python深度学习tensorflow
本文已收录于《Python超入门指南全册》本专栏专门针对零基础和需要进阶提升的同学所准备的一套完整教学,从基础到精通不断进阶深入,后续还有实战项目,轻松应对面试,专栏订阅地址:https://blog.csdn.net/mrdeam/category_12647587.html优点:订阅限时19.9付费专栏,私信博主还可进入全栈VIP答疑群,作者优先解答机会(代码指导、远程服务),群里大佬众多可以
- 深度学习实战:TensorFlow 开源项目指南
劳治亮
深度学习实战:TensorFlow开源项目指南Deep-Learning-TensorFlow项目地址:https://gitcode.com/gh_mirrors/dee/Deep-Learning-TensorFlow项目介绍本项目基于GitHub仓库https://github.com/blackecho/Deep-Learning-TensorFlow.git,旨在提供一个全面的学习与开发
- 深度学习实战:用TensorFlow构建高效CNN的完整指南
芯作者
DD:日记深度学习
一、为什么每个开发者都要掌握CNN?在自动驾驶汽车识别路标的0.1秒里,在医疗AI诊断肺部CT片的精准分析中,甚至在手机相册自动分类宠物的日常场景里,卷积神经网络(CNN)正悄然改变着我们的世界。本文将以工业级实践标准,带您从零构建一个在CIFAR-10数据集上达到90%+准确率的CNN模型,深入解析TensorFlow2.x的最新特性,并揭秘模型优化的七大核心策略。[外链图片转存失败,源站可能有
- 大模型技术在网络安全领域的应用与发展
蓝色的香菇
web安全安全大模型
一、概述大模型技术,尤其是深度学习和自然语言处理领域的大型预训练模型,近年来在网络安全领域得到了广泛应用。这些模型通过其强大的数据处理能力和泛化能力,为网络安全带来了新的机遇和挑战。本文将对大模型技术在网络安全领域的应用进行全面分析,识别关键应用进展,并探讨其对网络安全领域的潜在影响。二、大模型技术在网络安全领域的应用安全运营网络日志分析:大模型可以通过分析大量网络日志,自动识别异常行为和潜在威胁
- 基于opencv答题卡识别判卷
深度学习乐园
深度学习实战项目opencv人工智能计算机视觉
项目源码获取方式见文章末尾!回复暗号:13,免费获取600多个深度学习项目资料,快来加入社群一起学习吧。**《------往期经典推荐------》**项目名称1.【基于DDPG算法的股票量化交易】2.【卫星图像道路检测DeepLabV3Plus模型】3.【GAN模型实现二次元头像生成】4.【CNN模型实现mnist手写数字识别】5.【fasterRCNN模型实现飞机类目标检测】6.【CNN-LS
- AIGC在影视、广告、游戏行业的协同创作报告
嘉图明
AIGC游戏人工智能
AIGC在影视、广告、游戏行业的协同创作报告1.协作效能矩阵分析概述:生成式AI(AIGC)已经在影视、广告、游戏等创意行业的特定环节展现出协同增效作用。以下重点分析剧本生成和角色原画两个环节的人机协同效能,包括时间、质量和成本优化情况,并评估相关AI工具(ChatGPT、Runway、Midjourney、StableDiffusion)的应用案例。1.1剧本生成的AI协同效能时间优化:相较传
- #[特殊字符] 我靠这插件周肝5个项目!2024最强AI编程神器CodeGeeX实战(附保姆级教程+私藏资源)
donk66zzz
chatgpt人工智能c++javapythonAI编程开发语言
**写在前面**:最近用这个国产插件彻底上头了!不仅比Copilot省$10/月,还专门优化中文注释❗实测1天写完爬虫+数据清洗+自动化报告(附完整代码)。文末送《30个ChatGPT高效咒语模板》和《VSCode终极配置包》!---##一、为什么我弃用Copilot投奔CodeGeeX?###1.1真实项目耗时对比(Python数据清洗场景)||传统编码|Copilot|CodeGeeX||--
- 深度学习揭秘:神经网络如何模拟人脑
shelly聊AI
AI核心技术深度学习神经网络人工智能
大家好,我是Shelly,一个专注于输出AI工具和科技前沿内容的AI应用教练,体验过300+款以上的AI应用工具。关注科技及大模型领域对社会的影响10年+。关注我一起驾驭AI工具,拥抱AI时代的到来。AI工具集1:大厂AI工具【共23款】,一次性奉上,今天是百度和阿里AI工具集2:大厂AI工具【共12款】,一次性奉上,看看腾讯和字节的宝贝人工智能&AIGC术语100条Shelly聊AI-重磅发布一
- 【价值洼地的狩猎机制】
调皮的芋头
机器学习
大资本构建价值掠夺网络的本质,是一场精密设计的系统性剥削工程。其运作逻辑远超普通市场行为,而是通过技术霸权、制度漏洞与认知操控三位一体的组合拳,实现对目标领域的深度殖民化控制:一、价值洼地的狩猎机制1.量子级数据建模摩根士丹利开发的"经济熵变监测系统",实时抓取全球2.3亿个数据节点(包括电力消耗、集装箱空置率、社交媒体情绪指数等),通过深度学习预测区域经济断裂点。例如2014年预判委内瑞拉石油危
- 大语言模型中的 Token:它们是什么,如何工作?
运维小子
语言模型人工智能自然语言处理
引言如果你使用过ChatGPT这样的AI工具,你可能会好奇:它是如何理解并生成文字的?大语言模型(LLM,LargeLanguageModel)并不是直接处理整个句子或文章,而是拆分成一个个Token(标记)来进行计算。那么,什么是Token?它们在大语言模型中起到什么作用?这篇文章将用通俗易懂的语言帮你解开这些谜团。1.什么是Token?在大语言模型的世界里,Token(标记)是文本的最小单位,
- DeepSeek vs Grok vs ChatGPT:大模型三强争霸,谁将引领AI未来?
带上一无所知的我
chatgpt人工智能DeepSeek
DeepSeekvs.Grokvs.ChatGPT:大模型三强争霸,谁将引领AI未来?在人工智能领域,生成式模型的竞争已进入白热化阶段。DeepSeek、Grok和ChatGPT作为三大代表性工具,凭借独特的技术路径和应用优势,正在重塑行业格局。本文将从技术架构、核心功能、应用场景、性能成本等多维度展开深度对比,揭示其背后的竞争逻辑与未来趋势。一、技术架构:从知识图谱到通用智能的演进1.DeepS
- RAG检索增强:知识图谱赋能的高效问答系统
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着互联网和信息技术的飞速发展,人们获取信息的方式和途径也发生了巨大的变化。传统的搜索引擎已经无法满足用户对于更精准、更个性化、更智能的信息获取需求。问答系统作为一种能够直接回答用户问题的智能系统,应运而生,并逐渐成为信息检索领域的研究热点。早期的问答系统主要基于模板匹配和关键词匹配等方法,其回答准确率和效率都比较低。近年来,随着深度学习技术的兴起,基于深度学习的问答系统取得了显著的进
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "xxxxx@xxxxx.com"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri