- 数据挖掘常用算法模型简介
大乔乔布斯
数据挖掘线性回归决策树
以下是数据挖掘中常用的算法模型及其简称、英文全称和使用场景的简要介绍:1.决策树(DecisionTree,DT)常用算法:CART:ClassificationandRegressionTreeID3:IterativeDichotomiser3C4.5:基于ID3改进使用场景:分类问题(如信用风险评估、客户分类)回归问题(如预测房价)特点:易解释、适合处理非线性数据。2.随机森林(Random
- 从零到手搓一个Agent:AI Agents新手入门精通
大模型.
人工智能chatgpt大数据深度学习智能体算法大模型
今日主题:当什么是Agent,与LLM的区别又是啥这一天,你的女朋友问你(假设我们有女朋友),宝宝,什么是Agent啊,Agent和LLM有什么区别呀,最近大家都在说的Agent究竟是什么,包括很多文章都在写的Agent,还有之前谷歌发布的Agents白皮书究竟是什么,对我们有什么帮助,对我们有什么影响呢?现在,编者专门做了一个系列,从最简单的讲起,解开这个迷雾,这个系列的教程,会帮助你了解基本概
- 树的存储结构&树和森林的遍历
于冬恋
java算法数据结构
树的存储结构(1)双亲表示法(顺序存储)每个结点中保存指向双亲的“指针”#definemaxsize100//树中最多结点数typedefstruct{//树中结点定义intdata;//数据元素intparent;//双亲位置域}ptnode;typedefstruct{//数的类型定义ptnodenodes[maxsize];//双亲表示intn;//结点数}ptree;增加新元素只需保存该结
- 【数据结构】 并查集 + 路径压缩与按秩合并 python
查理零世
数据结构python算法
目录前言模板朴素实现路径压缩按秩合并按树高为秩按节点数为秩总结前言并查集的基本实现通常使用森林来表示不同的集合,每个集合用一棵树表示,树的每个节点有一个指向其父节点的指针。如果一个节点是它自己的父节点,那么它就是该集合的代表(称为根节点)。模板P3367【模板】并查集https://www.luogu.com.cn/problem/P3367题目描述如题,现在有一个并查集,你需要完成合并和查询操作
- 拨开迷雾:人工智能核心领域与大模型的演进逻辑!新手放心进,保证通俗易懂!!
小南AI学院
人工智能
1.人工智能的定义及其子领域人工智能(ArtificialIntelligence,AI)是计算机科学的一个重要分支,旨在模拟和扩展人类智能。AI涉及多个学科,涵盖数学、计算机科学、认知科学等领域。根据研究内容和技术特点,人工智能主要分为以下几个子领域:1.1人工智能人工智能是一个广义的概念,包含任何试图让机器表现出类似人类智能的技术。传统人工智能注重规则设计和逻辑推理,而现代人工智能通过机器学习
- 2025年美赛数学建模F题 为农业再培养腾出空间
小驴数模
数学建模美赛2025年美赛
b站小驴数模第一时间观看各个题目解析情况:一片充满高耸的树木和各种野生动物的森林被循环为农业让路。曾经繁荣的生态系统,鸟类、昆虫和动物的家园,消失,取而代之的是种植了一排排的作物。土地开始改变——曾经拥有丰富的自然资源的土壤土壤逐渐枯竭,害虫开始入侵庄稼。为了对抗这种情况,农民们转向了化学品,但土地的平衡被破坏了。随着这种转变,在森林里繁荣起来的错综复杂的生命之网被打破了,一种新的、由人类驱动的农
- “随机森林”及“混合随机森林和多目标粒子群优化”(RF_MOPSO),以预测目标作为学习方法并分别找到多特征过程的最佳参数(Matlab代码实现)
科研_研学社
随机森林学习方法matlab
欢迎来到本博客❤️❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。目录1概述2.1算例12.2算例23参考文献4Matlab代码实现1概述多目标优化问题普遍涉及到工程设计、生产制造、信息处理等应用领域。粒子群优化算法具有快速收敛、简单易行、并行搜索等特点,特别适合处理多目标优化问题。本文对多目标粒子群优化算法进行系统性的研究,结合随机森林的优势
- 数据结构考前一天
蒟蒻的贤
数据结构
线性表:矩阵,链表(单链表必考)栈和队列:出入判断,括号匹配,中缀转后缀字符串数组:模式匹配next,nextval数组,数组寻址,三角矩阵对应一维数组k,二叉树:二叉链表,求叶子数量,求深度,左右转换,前中后遍历,森林与二叉树转化,哈夫曼树,哈夫曼编码,图:DFS,BFS,邻接矩阵,邻接表(EdgeNode,VertexNode),最小生成树(prime加点,kruskal加边),最短路径(di
- L8打卡学习笔记
无涯学徒1998
学习笔记支持向量机
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊SVM与集成学习SVMSVM线性模型SVM非线性模型SVM常用参数集成学习随机森林导入数据查看数据信息数据分析随机森林模型预测结果结果分析个人总结SVM超平面:SVM在特征空间中寻找一个能够最大化类别间隔的超平面,称为最大间隔超平面。这个超平面就是将数据集分成不同类别的边界。支持向量:支持向量是离分隔超平面最近的样本点,它们决定了超平面的
- 浅谈人群扩展(lookalike)模型
eso1983
算法
Lookalike主要用于广告或者推荐系统中,找到与种子用户相似的人群。常用的算法应该包括协同过滤、基于标签的相似度计算,还有一些机器学习模型,比如逻辑回归、随机森林,以及深度学习的模型,比如DNN或者Embedding方法。这里简单介绍一下Lookalike人群扩展(相似人群扩展)中常用算法模型的解析,涵盖原理、数学公式、实现步骤、优缺点及适用场景。1.基于标签的相似度匹配原理通过用户标签(兴趣
- 未来商贸物流:人工智能与大数据的深度融合
呆码科技
临沂软件开发软件开发商贸物流科技人工智能
未来商贸物流:人工智能与大数据的深度融合在当今数字化浪潮汹涌澎湃的时代,商贸物流行业正站在变革的十字路口,而人工智能与大数据宛如一对闪耀的双子星,为其照亮前行的道路,深度融合之下,一个全新的未来画卷正徐徐展开。智能预测需求:精准把握市场脉搏传统的商贸物流往往依赖过往经验和粗略的市场调研来预估货物需求,这就如同在迷雾中摸索,充满不确定性。而如今,借助大数据的海量存储与超强分析能力,以及人工智能的深度
- R数据分析:多分类问题预测模型的ROC做法及解释
公众号Codewar原创作者
R数据分析
有同学做了个多分类的预测模型,结局有三个类别,做的模型包括多分类逻辑回归、随机森林和决策树,多分类逻辑回归是用ROC曲线并报告AUC作为模型评估的,后面两种模型报告了混淆矩阵,审稿人就提出要统一模型评估指标。那么肯定是统一成ROC了,刚好借这个机会给大家讲讲ROC在多分类问题情形下的具体使用和做法。ROC曲线回顾ROC曲线(ReceiverOperatingCharacteristicCurve)
- R语言机器学习算法实战系列(十九)特征选择之Monte Carlo算法(Monte Carlo Feature Selection)
生信学习者1
R语言机器学习实战r语言机器学习算法数据分析数据挖掘数据可视化人工智能
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!文章目录介绍原理步骤下载数据加载R包导入数据数据预处理数据分割MCFS运行MCFS-ID过程混淆矩阵重要特征的RI最小阈值距离与共同部分收敛特征重要性排序选择重要特征构建特征依赖图提取重要特征基于重要特征构建随机森林模型混淆矩阵评估模型AUC曲线刻画模型在训练和测试数据集的表现总结系统信息介绍特征选择(FeatureSel
- 2024:在成长、创作与生活中找到星光
手握风云-
生活
目录一、前言二、年度创作与历程回顾三、个人成长与突破3.1.初入迷雾:懵懂的起点3.2.从迷茫到笃定,开启技术探索之旅3.3.破茧成蝶:在质疑与焦虑中坚守初心3.4.蜕变之路:代码能力的质变与成长四、个人学习与博客事业的融合五、结语一、前言不知不觉,2024年已经过去,2025年已经悄然而至。今天是我加入CSDN的第244天,回首这大半年的时光,仿佛一场充实而精彩的旅程,每一天都充满了新奇与成长。
- 摆脱焦虑,释放大脑——GTD(Get Things Done)的核心与深度实践
Qingzong_MA
职场小白进阶篇职场和发展
在我们的日常工作中,总会有那么一刻,突然间产生强烈的焦虑感:明明有一件重要的事还没做,然而它又像消失在时光流转中的迷雾一样,让人抓不住。你知道它很重要,可它却摆脱了大脑的捕捉,像空气一样无形、无声。一旦在老板的晨会上被点名,心头的五雷轰顶刹那间提醒了你:“原来是这个!”这种记忆的疏忽,正是许多人管理时间的最大障碍。无论是灵感的闪现,还是老板交代的琐碎任务,脑海中的瞬时遗忘都成为我们面临的最真实困境
- ChatGPT4.0最新功能和使用技巧,助力日常生活、学习与工作!
WangYan2022
教程人工智能chatgpt数据分析ai绘画AI写作
熟练掌握ChatGPT4.0在数据分析、自动生成代码等方面的强大功能,系统学习人工智能(包括传统机器学习、深度学习等)的基础理论知识,以及具体的代码实现方法,同时掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、RNN与LSTM神经网络
- 随机森林分类算法原理与实验分析
ningaiiii
机器学习与深度学习随机森林分类算法
随机森林分类算法原理与实验分析1.引言随机森林(RandomForest)是一种集成学习方法,它通过构建多个决策树并结合它们的预测结果来进行分类。你可以把它想象成一个“团队决策”的过程:团队中的每个成员(决策树)都独立发表意见,最后通过投票决定最终结果。这种方法不仅提高了模型的准确性,还增强了模型的稳定性和鲁棒性。随机森林的主要特点是通过随机选择样本和特征来构建多个决策树,从而避免单棵决策树可能产
- 人工智能英语学习笔记
「已注销」
基础篇单词mythologyn.ancientmythsingeneral;ideasthatmanypeoplethinkaretruebutthatdonotexistorarefalse神话Examples:AsatyrishalfmanandhalfgoatinGreekandRomanmythology.在希腊和罗马神话中,森林之神是半人半羊的样子。Thishasbeenwellillu
- 蓝桥杯 算法训练——礼物(二分法)Python
lican3
蓝桥杯蓝桥杯算法二分法石子问题前缀和
这个博客是摆烂小白冲刺蓝桥杯国赛的算法笔记,呜呜因为太过摆烂现在六级、期末和国赛全在一起是真的会栓Q的好吗。。。我每次学习懂一题都会很开心,吃饭都香那种开心(因为太过小白),今天是六一祝大家六一快乐啊!!!代码放在上面记录,欢迎各位指正和讨论!礼物问题描述JiaoShou在爱琳大陆的旅行完毕,即将回家,为了纪念这次旅行,他决定带回一些礼物给好朋友。在走出了怪物森林以后,JiaoShou看到了排成一
- 我们的绿色家园
css
大自然原本是美丽而和谐的。我们曾经拥有清澈的河流,在河流里鱼儿欢快地游动,溪边的水草随风摇曳。森林里绿树成荫,各种鸟儿在枝头歌唱。但是随着工业的发展和人类活动的加剧,环境污染问题日益严重。我们看到河流被污染,垃圾漂浮在水面,散发着恶臭。森林被过度砍伐,许多动植物失去了栖息地。大气污染让天空不再湛蓝。然而,我们有责任改变这种状况。从身边小事做起,垃圾分类就是一个很好的开始。我们可以把可回收物、有害垃
- 《大兴安岭猎人传说》今年最好看的东北鬼怪故事,很优秀
一部电影
《大兴安岭猎人传说》是最新上映于愚人节的网剧,别看是网剧却远超出我的个人预料。该片由民俗故事改编,这点就很吸引人,因为民俗故事口口相传,比那些编造而成的鬼故事更具有了真实性,网大做的电影还不错哦,如果可以我打四星好评。大兴安岭的故事我们经常听老人提起,那里有原始大森林,物产丰富,更流传着精灵怪物的传说。什么红黄白柳灰,出马仙、人参娃娃的故事层出不穷,以大兴安岭为背景的故事真不少。可很多鬼片看到最后
- 《吹牛大王历险记》读书随笔
赵炳森
这本书的作者是埃·拉斯伯戈·毕尔格。(没查到相关内容,好像他只写过《吹牛大王历险记》。)最让人百思不得其解的是他居然能自己拉自己的辫子出泥潭?!我觉得自己拉自己的辫子只会把自己的辫子拉断,而不会飞出泥潭。(问:图片中底下的屁股为什么插了一根钢针?)屁股底下居然有根钢针?在泥潭应该是滑滑的吧,可是他怎么能夹紧马肚呢?马肚子应该是在马的下方。还有如果能从泥潭里把连人带马都给拽出来的话,他力气肯定很大,
- 【人生感悟】真正厉害的人,抽象思维都很强大
加百力
生活工作感悟大数据科技数据分析
我们都身处信息爆炸的时代,各种资讯蜂拥而至,很难保证所接收的信息都是准确的。在这样的情况下,拥有“穿透迷雾,直击核心”的能力非常关键。虽然钻研各个领域的专业知识可以帮助我们避免信息误导,但这个过程可能超出我们想象地漫长。事实上,真正厉害的人都有一个共同点——他们善于抽象思维。这也是我在读《科技群星闪耀时:15个创新传奇》这本书是意识到的。什么是抽象思维?抽象思维是一种超越细节、直指事物本质的思维方
- 共读《绿野仙踪》有感 ——战胜自己就是勇敢的人
倚窗听雨_1ac2
今天我和孩子们一起共读的是《绿野仙踪》——路遇胆小狮。我发现这本书每一章的开头儿,都是对环境的描写。有干燥的堪萨斯州,有美丽的芒奇金人的国度,有通往翡翠城沿途优美的风景,有黑暗的森林......而这一章,重点描述了密林深处可怕的咆哮声。他们一行四人走在堆满黄树叶和枯树枝的黄砖路上。就在这样的情况下,他们遇到了一头大狮子。大狮子挥到了稻草人,扑倒了铁皮人。这危险时刻,托托虽小,却也敢面对强敌。它跑上
- 财富鹅前传 第三节 五张芭蕉叶
林劲_财富鹅农场
新领袖带领族群,向西南方向飞越了巴蕉林,沿着干涸的河道来到了海洋上空。海洋上空浓烟密布,根本看不清海面。天鹅群只能紧跟他们的新领袖,贴近海面飞行。大约飞了2个小时,新领袖激动地鸣叫告诉大家:“我们快到了!”穿越了重重烟雾,天鹅群终于看到了新领袖所说的小岛——那是一座微型小岛,就像一颗珍珠一样藏匿在大海之中。天鹅群紧跟着领袖钻入了一个岩石洞,来到了一个与世隔绝的树林。如领袖所说,在森林中间是一个淡水
- 小故事:森林书生
zero川
1文生是一个生活在森林里的书生,他在那里有一个小树屋,屋子里放满了各种书籍。文生住所这里离乡镇闹市有30多公里远,所以平时很少会去市面上跟别人产生任何交集。文生大多数生活时间都是以书为伴、以野外万物为伴…文生靠采摘蘑菇、野菜野果维持生计,由于天性善良,所以不曾捕猎。森林里的动物也因此跟文生特别交好,经常会来文生住所调皮捣蛋。
- 要把孩子当平凡人
我是真老师
义乌国家森林大多数现代家长都有一种“望子成龙”“望女成凤”的心理,都有一种想让孩子去实现自己未曾实现过的愿望的补偿心理。虽然大家都知道这是不现实的,毕竟每个孩子有他自己的人生使命,但是中国千百年来的传统思维根深蒂固,认为孩子是家长生养的,他的人生也必须听家长的安排。下面这些场景大家一定不陌生:小时候没上过兴趣班,琴棋书画都不知为何物的父母们,有了孩子后,即使紧衣缩食,通常都会尽力给孩子多报几个兴趣
- 我喜欢橡树
哥舒
橡树代表的意思是:永恒。橡树材质坚硬,粗壮宽大,树冠繁茂,有“森林之王”的美称。在欧美文化中,橡树与人的生命相关,是力量的象征,与权威相连。它有着非凡的威仪、特别的气度和神秘的力量,被视为“神秘之树”。传说这种高大粗壮树木的掌管者是希腊主神宙斯、罗马爱神丘比特以及灶神维斯塔。在宙斯神殿里的山地森林里,矗立着一棵具有神力的参天橡树,橡树叶的沙沙声就是主神宙斯对希腊人的晓喻。许多国家皆将橡树视为圣树,
- 2021-01-14
闲谈道非
清晨的露珠晶莹剔透,未来得及从草叶尖滑落就已凝固成透明的晶体。天空挂着的猎户座星体依旧清晰可辩,妖风骤起,包裹着一层又一层的衣物形同虚设,透骨的凉意转瞬遍布浑身。食指与中指间的香烟透着微弱的红光,冉冉升起的白烟与嘴巴哈出的白雾交汇在一起,牙齿在咯咯作响。白烟处惊现你的身影,挥舞长袖醉倒红烛案台,清澈的眼睛多了一层迷雾,藏着不属于这个季节的烟雨。红盖头上的金色凤凰灵动栩栩如生,红灯笼下的脸颊红红似滚
- 爱睡觉的小熊
千涤
住在幻彩森林多乐园里的小熊梢尔是极喜爱睡觉的,如果要问梢尔这个世界上最美好的事是什么,它准会伸一个长长的懒腰,打着呵欠,吞着口水说:"那当然是睡觉咯,没有比睡觉更好的事了!"一天,小动物们组织一次去野游的活动,它们准备到河那边的焰火山溶洞里玩耍,听多乐园德高望众的羊爷爷说,那个山洞中长满了五颜六色的钟乳石,形状奇特,十分壮观,小动物非常渴望到现场亲眼看看那传奇的美景,所以打算集体出动,去一探究竟。
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多