- Apache HBase基础(基本概述,物理架构,逻辑架构,数据管理,架构特点,HBase Shell)
May--J--Oldhu
HBaseHBaseshellhbase物理架构hbase逻辑架构hbase
NoSQL综述及ApacheHBase基础一.HBase1.HBase概述2.HBase发展历史3.HBase应用场景3.1增量数据-时间序列数据3.2信息交换-消息传递3.3内容服务-Web后端应用程序3.4HBase应用场景示例4.ApacheHBase生态圈5.HBase物理架构5.1HMaster5.2RegionServer5.3Region和Table6.HBase逻辑架构-Row7.
- 数据分析-24-时间序列预测之基于keras的VMD-LSTM和VMD-CNN-LSTM预测风速
皮皮冰燃
数据分析数据分析
文章目录1普通的LSTM模型1.1数据重采样1.2数据标准化1.3切分窗口1.4划分数据集1.5建立模型1.6预测效果2VMD-LSTM模型2.1VMD分解时间序列2.2对每一个IMF建立LSTM模型2.2.1IMF1—LSTM2.2.2IMF2-LSTM2.2.3统一代码2.3评估效果3CNN-LSTM模型3.1数据预处理3.2建立模型3.3效果预测4VMD-CNN-LSTM模型4.1VMD分解
- Prometheus运维六 PromQL查询语言详解及操作
安顾里
Prometheus监控类大数据kubernetes运维linux
海阔凭鱼跃,天高任鸟飞Prometheus官网:https://prometheus.io/文章目录1.什么是PromQL?2.PromQL的基本使用2.1时间序列选择器2.1.1瞬时向量选择器2.2区间向量选择器2.2.1范围向量选择器2.2.2时间位移操作2.2.3使用聚合操作2.3标量和字符串3.PromQL操作符4.内置常用函数5.HTTPAPI操作PromQL6.使用建议1.什么是Pro
- 基于Prometheus和Grafana的现代服务器监控体系构建
golove666
运维prometheusgrafana服务器
构建一个基于Prometheus和Grafana的现代服务器监控体系涉及多个步骤。以下是大体的流程和步骤说明:1.Prometheus监控系统Prometheus是一个开源的系统监控和报警工具,专门设计用于抓取时间序列数据。1.1Prometheus的安装Docker安装Prometheusdockerrun-d--name=prometheus-p9090:9090prom/prometheus
- 平滑法时间序列模型原理及Python实践
AI智博信息
数据分析与挖掘python人工智能
平滑法时间序列模型原理主要涉及通过一定的算法对时间序列数据进行平滑处理,以消除或减弱数据中的随机波动和噪声,从而揭示出数据中的长期趋势和季节性变化,进而对未来数据进行预测。以下是平滑法时间序列模型的详细原理:一、基本原理平滑法时间序列模型基于对历史数据的平滑处理,通过对数据的平均或加权平均,去除数据中的随机波动,使得时间序列数据更加平滑,便于分析和预测。这种方法能够帮助我们更好地理解数据的长期趋势
- Pandas教程:详解Pandas数据清洗
旦莫
PythonPandaspythonpandas数据分析
目录1.引言2.Pandas基础2.1安装与导入2.2创建一个复杂的DataFrame3.数据清洗流程3.1处理缺失值3.1.1删除缺失值3.1.2填充缺失值3.2数据去重3.3数据类型转换4.数据处理与变换4.1添加与删除列4.2数据排序5.数据分组与聚合6.其他数据清洗方法6.1字符串处理6.2时间序列处理6.3数据类型转换1.引言数据清洗是数据科学和数据分析中的一个重要步骤,旨在提升数据的质
- 时序预测|基于粒子群优化支持向量机的时间序列预测Matlab程序PSO-SVM 单变量和多变量 含基础模型
机器不会学习CL
智能优化算法时间序列预测支持向量机matlab算法
时序预测|基于粒子群优化支持向量机的时间序列预测Matlab程序PSO-SVM单变量和多变量含基础模型文章目录一、基本原理1.问题定义2.数据准备3.SVM模型构建4.粒子群优化(PSO)5.优化与模型训练6.模型评估与预测7.流程总结8.MATLAB实现概述二、实验结果三、核心代码四、代码获取五、总结时序预测|基于粒子群优化支持向量机的时间序列预测Matlab程序PSO-SVM单变量和多变量含基
- R语言自学笔记-2内置数据集
实验室长工
#b站视频——R语言入门与数据分析#内置数据集#固定格式的数据(矩阵、数据框或一个时间序列等)#统计建模、回归分析等试验需要找合适的数据集#R内置数据集,存储在,通过help(package="datasets")#通过data函数访问这些数据集data()#得到新窗口前面:数据集名字后面:内容#包含R所有用到的数据类型,包括:向量、矩阵、列表、因子、数据框以及时间序列等#直接输入数据集的名字就可
- 论文学习笔记 VMamba: Visual State Space Model
Wils0nEdwards
学习笔记
概览这篇论文的动机源于在计算机视觉领域设计计算高效的网络架构的持续需求。当前的视觉模型如卷积神经网络(CNNs)和视觉Transformer(ViTs)在处理大规模视觉任务时展现出良好的表现,但都存在各自的局限性。特别是,ViTs尽管在处理大规模数据上具有优势,但其自注意力机制的二次复杂度对高分辨率图像处理时的计算成本极高。因此,研究者希望通过引入新的架构来降低这种复杂度,并提高视觉任务的效率。现
- 数据分析-18-时间序列分析的季节性检验
皮皮冰燃
数据分析数据分析
1什么是时间序列时间序列是一组按时间顺序排列的数据点的集合,通常以固定的时间间隔进行观测。这些数据点可以是按小时、天、月甚至年进行采样的。时间序列在许多领域中都有广泛应用,例如金融、经济学、气象学和工程等。时间序列的分析可以帮助我们理解和预测未来的趋势和模式,以及了解数据的周期性、趋势、季节性等特征。常用的时间序列分析方法包括平滑法、回归分析、ARIMA模型、指数平滑法和机器学习方法等。1.1时间
- 时间序列分析技巧(二):ARIMA模型建模步骤总结
小墨&晓末
时间序列分析算法机器学习人工智能程序人生
CSDN小墨&晓末:https://blog.csdn.net/jd1813346972 个人介绍:研一|统计学|干货分享 擅长Python、Matlab、R等主流编程软件 累计十余项国家级比赛奖项,参与研究经费10w、40w级横向文章目录1目的2ARIMA模型建模流程图解3ARIMA模型建模实操1目的 该篇为针对时间序列ARIMA模型建模系列技巧:ARIMA模型
- 网络安全最新SARIMA季节项时间序列分析流程+python代码
2401_84301389
程序员python人工智能机器学习
文章目录数据流程流程分割1画图2季节项和周期项的去除3平稳性检验4白噪声检验5模型拟合6模型定阶AIC/BIC准则7检查残差是否通过检验7.1若通过检验7.2若未通过检验8模型的预测9模型的评价画图均方差等总的代码参考数据数据网站:NationalAeronauticsandSpaceAdministrationGoddardInstituteforSpaceStudies主要分析的是北美陆地表面
- Python强化学习,基于gym的马尔可夫决策过程MDP,动态规划求解,体现序贯决策
baozouxiaoxian
pythongymqlearningpython强化学习mdp动态规划求解马尔科夫决策过程
决策的过程分为单阶段和多阶段的。单阶段决策也就是单次决策,这个很简单。而序贯决策指按时间序列的发生,按顺序连续不断地作出决策,即多阶段决策,决策是分前后顺序的。序贯决策是前一阶段决策方案的选择,会影响到后一阶段决策方案的选择,后一阶段决策方案的选择是取决于前一阶段决策方案的结果。强化学习过程中最典型的例子就是非线性二级摆系统,有4个关键值,小车受力,受力方向,摆速度,摆角,每个状态下都需要决策车的
- 【论文阅读】Mamba:选择状态空间模型的线性时间序列建模(二)
syugyou
Mamba状态空间模型论文阅读
文章目录3.4一个简化的SSM结构3.5选择机制的性质3.5.1和门控机制的联系3.5.2选择机制的解释3.6额外的模型细节A讨论:选择机制C选择SSM的机制Mamba论文第一部分Mamba:选择状态空间模型的线性时间序列建模(一)3.4一个简化的SSM结构如同结构SSM,选择SSM是单独序列变换可以灵活地整合进神经网络。H3结构式最知名SSM结构地基础,其通常包括受线性注意力启发的和MLP交替地
- 时空地理加权回归_成果案例 | 中国交通碳排放及影响因素时空异质性
weixin_39930557
时空地理加权回归
中国地域辽阔,不同省域经济发展、资源禀赋、交通基础设施存在显著差异,导致交通碳排放水平差异很大。然而,以往关于交通碳排放规律的研究多是基于时间序列的全局分析,忽略了研究单元之间的相互作用及空间异质性。因此,本研究选取30个省级行政区作为空间单元,利用自上而下法计算省域交通碳排放量,采用探索性空间数据分析方法对2000年至2015年交通碳排放时空分布格局进行研究。同时考虑空间单元的差异性,构建地理加
- 机器学习-神经网络:循环神经网络(RNN)详解
刷刷刷粉刷匠
机器学习机器学习神经网络rnn
引言在当今人工智能(AI)和深度学习(DL)领域,循环神经网络(RNN)作为一种专门处理序列数据的模型,具有不可忽视的重要性。RNN的设计目标是模拟和处理序列中的时间依赖关系,使其成为许多应用场景的理想选择,如自然语言处理(NLP)、时间序列预测和语音识别等。它不仅能处理固定长度的数据输入,还能应对输入长度不一的序列,从而为各种复杂的时序数据任务提供了强有力的支持。1.RNN的起源与发展循环神经网
- 基于Prometheus和Grafana的现代服务器监控体系构建
不会代码的小林
服务器
在当今的IT基础设施中,监控是确保系统性能和稳定性的关键组成部分。Prometheus和Grafana是两个广受欢迎的开源工具,它们可以共同构建一个功能全面、可视化强的监控系统。Prometheus是一个开源的监控系统和时间序列数据库,适用于记录实时的度量指标。它不仅提供了多维数据模型和强大的PromQL查询语言,还支持服务发现和HTTP拉取模型。这些特性使得Prometheus特别适合在微服务和
- 2024年MathorCup高校数学建模挑战赛(C题)深度剖析_建模完整过程+详细思路+代码全解析
Unicorn建模
数学建模python算法
问题1本问题属于时间序列预测问题,其目标是对未来一段时期内的信息进行预测。因此可以采用基于时间序列的回归模型进行货量预测。具体而言,将首先分析时间序列的性质,然后构建回归模型,最后利用模型对未来30天每天及每小时的货量进行预测。【算法原理】(1)时间序列的性质时间序列实际上是一种随时间变化的连续数据,其特点主要体现在两个方面:趋势性和周期性。趋势性是指时间序列数据在长期内呈现出的增长或减小的趋势,
- 数据分析-13-时间序列异常值检测的类型及常见的检测方法
皮皮冰燃
数据分析数据分析
参考时间序列异常值的分类及检测参考异常值数据预警分析1时间序列异常的类型时间序列异常检测是数据处理和分析的重要环节,广泛应用于量化交易、网络安全检测、自动驾驶汽车和大型工业设备日常维护等领域。在时间序列数据中,异常通常指的是与正常数据模式显著不同的数据点,可能由系统故障、错误或外部干扰引起。异常数据,也称为离群点,是指在数据集中与其他数据点明显不同的样本。这些数据点往往不符合预期的模式或行为,可能
- 2024 数学建模国赛 C 题模型及算法(无废话版)
不染53
数学建模数学建模算法python
目录写在开始需要掌握的数学模型/算法评价体系/评价类问题时间序列处理数据降维聚类问题(无监督)分类问题(有监督)集成学习(Bagging/Boosting)回归问题关联分析统计学方法/统计模型智能优化算法需要掌握的Python专业库需要掌握的软件/工具写在开始本人获2023年数学建模国赛C题国家级一等奖,备赛期间专攻C题。本文总结了在备赛期间总结的模型和算法,足以应对90%国赛C题中涉及到的问题。
- 探索未来:LLMTime——大型语言模型的零样本时间序列预测器
褚知茉Jade
探索未来:LLMTime——大型语言模型的零样本时间序列预测器在这个数字化的时代,时间和数据是推动世界前进的关键因素。LLMTime是一个创新性的开源项目,它揭示了大型语言模型(LLMs)在时间序列预测中的惊人潜力。无需针对特定任务进行训练,仅通过将数值转化为文本并采样可能的扩展,LLMTime就能超越传统的时间序列方法。项目介绍LLMTime提出了一种名为"零样本时间序列预测"的方法,其核心在于
- Time-LLM 开源项目使用教程
袁菲李
Time-LLM开源项目使用教程Time-LLM[ICLR2024]Officialimplementationof"Time-LLM:TimeSeriesForecastingbyReprogrammingLargeLanguageModels"项目地址:https://gitcode.com/gh_mirrors/ti/Time-LLM项目介绍Time-LLM是一个用于时间序列预测的框架,通过
- Python数据分析详解(适合新手的详细教程)
码农必胜客
Python零基础入门python数据分析开发语言
前言这篇文章主要介绍了Python中的数据分析详解,对数据进行分析。数据分析是指根据分析目的,用适当的统计分析方法及工具,对收集来的数据进行处理与分析,提取有价值的信息,发挥数据的作用。目录数据分析概述python在数据分析方面有哪些优势数据的导入和导出导入数据导出数据数据预处理数据的选择和运算数据分类汇总和统计时间序列数据可视化数据分析概述python在数据分析方面有哪些优势Python不受数据
- 基于Prometheus和Grafana的现代服务器监控体系构建
小绵羊不怕大灰狼
prometheusgrafana
1.安装PrometheusPrometheus是一个开源的监控系统和时间序列数据库,适用于记录实时的度量指标。•下载并安装Prometheus:•前往Prometheus官方网站下载适用于您操作系统的版本。•解压并配置prometheus.yml文件,定义抓取目标(targets),如服务器、应用程序等。•配置Prometheus:•编辑prometheus.yml文件,添加您要监控的服务器地址
- Integrating Mamba and Transformer for Long-Short Range Time Series Forecasting———PRELIMINARIES
six.学长
Mambaformertransformer深度学习人工智能
ProblemStatement在长短期时间序列预测问题中,给定历史时间序列样本的回溯窗口L=(x1,x2,..,xL)L=(x_1,x_2,..,x_L)L=(x1,x2,..,xL),长度为LLL,其中每个时间步ttt的样本xt∈RMx_t\in\mathbb{R}^Mxt∈RM,包含MMM个变量,我们的目标是预测未来的FFF个值,即F=(xL+1,xL+2,..,xL+F)F=(x_{L+1
- Integrating Mamba and Transformer for Long-Short Range Time Series Forecasting————4 METHODOLOG
six.学长
Mambaformertransformer深度学习人工智能
4METHODOLOGY图解Mambaformer模型结合了Mamba和Transformer的元素,旨在进行时间序列预测。以下是Mambaformer模型的各个组成部分和流程的详细说明:嵌入层(EmbeddingLayer)TokenEncoding(令牌编码):这个部分将输入数据编码成向量表示,以捕捉输入特征的语义含义或特征。TemporalEncoding(时间编码):这部分加入时间信息,例
- 推荐开源项目:Fluxter - Elixir连接InfluxDB的高效桥梁
江奎钰
推荐开源项目:Fluxter-Elixir连接InfluxDB的高效桥梁fluxterHigh-performanceandreliableInfluxDBwriterforElixir项目地址:https://gitcode.com/gh_mirrors/fl/fluxter项目介绍Fluxter是一款专为Elixir社区打造的轻量级工具,旨在简化与InfluxDB——高性能的时间序列数据库之间
- 【Python】Pandas:数据分析
T0uken
数据分析pythonpandas
Pandas是Python中功能强大的数据分析工具,用于处理和分析结构化数据。本文将通过分步骤的方式,详细介绍如何使用Pandas进行数据分组、重塑、透视表、时间序列处理、类别型数据管理以及数据可视化。这些知识点将帮助初学者快速上手并掌握Pandas的核心功能。数据分组(Grouping)数据分组是数据分析中的常见操作,Pandas的groupby()方法允许我们按列对数据进行分组,然后对每个组执
- InfluxDB和OpenTSDB两种时序数据库应用场景
CodeMaster_37714848
opentsdb时序数据库数据库
InfluxDB概述:InfluxDB是一个开源的高性能时序数据库,专门用于处理大量的时间序列数据。它由InfluxData开发,支持高写入吞吐量和灵活的查询。特点:高性能写入和查询:设计上注重高写入速度和低延迟查询。SQL-like查询语言:使用类似SQL的InfluxQL或Flux查询语言,简化了复杂查询的编写。数据压缩:提供高效的数据压缩机制,减少存储需求。集成和工具:支持与Grafana等
- 数学建模强化宝典(11)时间预测模型
IT 青年
建模强化栈数学建模数据预测模型编程
前言时间预测模型,即时间序列预测模型,是一类专门用于分析和预测时间序列数据的模型。时间序列数据是指将某一变量在不同时间点的观测值按时间先后顺序排列而成的序列。这类模型在金融、经济、气象、工业控制等多个领域都有广泛的应用。以下是一些常见的时间序列预测模型:1.朴素法(NaiveMethod)原理:预测值等于实际观察到的最后一个值。它假设数据是平稳且没有趋势性与季节性的。适用场景:数据变化不大或仅作为
- Dom
周华华
JavaScripthtml
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 【Spark九十六】RDD API之combineByKey
bit1129
spark
1. combineByKey函数的运行机制
RDD提供了很多针对元素类型为(K,V)的API,这些API封装在PairRDDFunctions类中,通过Scala隐式转换使用。这些API实现上是借助于combineByKey实现的。combineByKey函数本身也是RDD开放给Spark开发人员使用的API之一
首先看一下combineByKey的方法说明:
- msyql设置密码报错:ERROR 1372 (HY000): 解决方法详解
daizj
mysql设置密码
MySql给用户设置权限同时指定访问密码时,会提示如下错误:
ERROR 1372 (HY000): Password hash should be a 41-digit hexadecimal number;
问题原因:你输入的密码是明文。不允许这么输入。
解决办法:用select password('你想输入的密码');查询出你的密码对应的字符串,
然后
- 路漫漫其修远兮 吾将上下而求索
周凡杨
学习 思索
王国维在他的《人间词话》中曾经概括了为学的三种境界古今之成大事业、大学问者,罔不经过三种之境界。“昨夜西风凋碧树。独上高楼,望尽天涯路。”此第一境界也。“衣带渐宽终不悔,为伊消得人憔悴。”此第二境界也。“众里寻他千百度,蓦然回首,那人却在灯火阑珊处。”此第三境界也。学习技术,这也是你必须经历的三种境界。第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。这里,注
- Hadoop(二)对话单的操作
朱辉辉33
hadoop
Debug:
1、
A = LOAD '/user/hue/task.txt' USING PigStorage(' ')
AS (col1,col2,col3);
DUMP A;
//输出结果前几行示例:
(>ggsnPDPRecord(21),,)
(-->recordType(0),,)
(-->networkInitiation(1),,)
- web报表工具FineReport常用函数的用法总结(日期和时间函数)
老A不折腾
finereport报表工具web开发
web报表工具FineReport常用函数的用法总结(日期和时间函数)
说明:凡函数中以日期作为参数因子的,其中日期的形式都必须是yy/mm/dd。而且必须用英文环境下双引号(" ")引用。
DATE
DATE(year,month,day):返回一个表示某一特定日期的系列数。
Year:代表年,可为一到四位数。
Month:代表月份。
- c++ 宏定义中的##操作符
墙头上一根草
C++
#与##在宏定义中的--宏展开 #include <stdio.h> #define f(a,b) a##b #define g(a) #a #define h(a) g(a) int main() { &nbs
- 分析Spring源代码之,DI的实现
aijuans
springDI现源代码
(转)
分析Spring源代码之,DI的实现
2012/1/3 by tony
接着上次的讲,以下这个sample
[java]
view plain
copy
print
- for循环的进化
alxw4616
JavaScript
// for循环的进化
// 菜鸟
for (var i = 0; i < Things.length ; i++) {
// Things[i]
}
// 老鸟
for (var i = 0, len = Things.length; i < len; i++) {
// Things[i]
}
// 大师
for (var i = Things.le
- 网络编程Socket和ServerSocket简单的使用
百合不是茶
网络编程基础IP地址端口
网络编程;TCP/IP协议
网络:实现计算机之间的信息共享,数据资源的交换
协议:数据交换需要遵守的一种协议,按照约定的数据格式等写出去
端口:用于计算机之间的通信
每运行一个程序,系统会分配一个编号给该程序,作为和外界交换数据的唯一标识
0~65535
查看被使用的
- JDK1.5 生产消费者
bijian1013
javathread生产消费者java多线程
ArrayBlockingQueue:
一个由数组支持的有界阻塞队列。此队列按 FIFO(先进先出)原则对元素进行排序。队列的头部 是在队列中存在时间最长的元素。队列的尾部 是在队列中存在时间最短的元素。新元素插入到队列的尾部,队列检索操作则是从队列头部开始获得元素。
ArrayBlockingQueue的常用方法:
- JAVA版身份证获取性别、出生日期及年龄
bijian1013
java性别出生日期年龄
工作中需要根据身份证获取性别、出生日期及年龄,且要还要支持15位长度的身份证号码,网上搜索了一下,经过测试好像多少存在点问题,干脆自已写一个。
CertificateNo.java
package com.bijian.study;
import java.util.Calendar;
import
- 【Java范型六】范型与枚举
bit1129
java
首先,枚举类型的定义不能带有类型参数,所以,不能把枚举类型定义为范型枚举类,例如下面的枚举类定义是有编译错的
public enum EnumGenerics<T> { //编译错,提示枚举不能带有范型参数
OK, ERROR;
public <T> T get(T type) {
return null;
- 【Nginx五】Nginx常用日志格式含义
bit1129
nginx
1. log_format
1.1 log_format指令用于指定日志的格式,格式:
log_format name(格式名称) type(格式样式)
1.2 如下是一个常用的Nginx日志格式:
log_format main '[$time_local]|$request_time|$status|$body_bytes
- Lua 语言 15 分钟快速入门
ronin47
lua 基础
-
-
单行注释
-
-
[[
[多行注释]
-
-
]]
-
-
-
-
-
-
-
-
-
-
-
1.
变量 & 控制流
-
-
-
-
-
-
-
-
-
-
num
=
23
-
-
数字都是双精度
str
=
'aspythonstring'
- java-35.求一个矩阵中最大的二维矩阵 ( 元素和最大 )
bylijinnan
java
the idea is from:
http://blog.csdn.net/zhanxinhang/article/details/6731134
public class MaxSubMatrix {
/**see http://blog.csdn.net/zhanxinhang/article/details/6731134
* Q35
求一个矩阵中最大的二维
- mongoDB文档型数据库特点
开窍的石头
mongoDB文档型数据库特点
MongoDD: 文档型数据库存储的是Bson文档-->json的二进制
特点:内部是执行引擎是js解释器,把文档转成Bson结构,在查询时转换成js对象。
mongoDB传统型数据库对比
传统类型数据库:结构化数据,定好了表结构后每一个内容符合表结构的。也就是说每一行每一列的数据都是一样的
文档型数据库:不用定好数据结构,
- [毕业季节]欢迎广大毕业生加入JAVA程序员的行列
comsci
java
一年一度的毕业季来临了。。。。。。。。
正在投简历的学弟学妹们。。。如果觉得学校推荐的单位和公司不适合自己的兴趣和专业,可以考虑来我们软件行业,做一名职业程序员。。。
软件行业的开发工具中,对初学者最友好的就是JAVA语言了,网络上不仅仅有大量的
- PHP操作Excel – PHPExcel 基本用法详解
cuiyadll
PHPExcel
导出excel属性设置//Include classrequire_once('Classes/PHPExcel.php');require_once('Classes/PHPExcel/Writer/Excel2007.php');$objPHPExcel = new PHPExcel();//Set properties 设置文件属性$objPHPExcel->getProperties
- IBM Webshpere MQ Client User Issue (MCAUSER)
darrenzhu
IBMjmsuserMQMCAUSER
IBM MQ JMS Client去连接远端MQ Server的时候,需要提供User和Password吗?
答案是根据情况而定,取决于所定义的Channel里面的属性Message channel agent user identifier (MCAUSER)的设置。
http://stackoverflow.com/questions/20209429/how-mca-user-i
- 网线的接法
dcj3sjt126com
一、PC连HUB (直连线)A端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 二、PC连PC (交叉线)A端:(568A): 白绿,绿,白橙,蓝,白蓝,橙,白棕,棕; B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 三、HUB连HUB&nb
- Vimium插件让键盘党像操作Vim一样操作Chrome
dcj3sjt126com
chromevim
什么是键盘党?
键盘党是指尽可能将所有电脑操作用键盘来完成,而不去动鼠标的人。鼠标应该说是新手们的最爱,很直观,指哪点哪,很听话!不过常常使用电脑的人,如果一直使用鼠标的话,手会发酸,因为操作鼠标的时候,手臂不是在一个自然的状态,臂肌会处于绷紧状态。而使用键盘则双手是放松状态,只有手指在动。而且尽量少的从鼠标移动到键盘来回操作,也省不少事。
在chrome里安装 vimium 插件
- MongoDB查询(2)——数组查询[六]
eksliang
mongodbMongoDB查询数组
MongoDB查询数组
转载请出自出处:http://eksliang.iteye.com/blog/2177292 一、概述
MongoDB查询数组与查询标量值是一样的,例如,有一个水果列表,如下所示:
> db.food.find()
{ "_id" : "001", "fruits" : [ "苹
- cordova读写文件(1)
gundumw100
JavaScriptCordova
使用cordova可以很方便的在手机sdcard中读写文件。
首先需要安装cordova插件:file
命令为:
cordova plugin add org.apache.cordova.file
然后就可以读写文件了,这里我先是写入一个文件,具体的JS代码为:
var datas=null;//datas need write
var directory=&
- HTML5 FormData 进行文件jquery ajax 上传 到又拍云
ileson
jqueryAjaxhtml5FormData
html5 新东西:FormData 可以提交二进制数据。
页面test.html
<!DOCTYPE>
<html>
<head>
<title> formdata file jquery ajax upload</title>
</head>
<body>
<
- swift appearanceWhenContainedIn:(version1.2 xcode6.4)
啸笑天
version
swift1.2中没有oc中对应的方法:
+ (instancetype)appearanceWhenContainedIn:(Class <UIAppearanceContainer>)ContainerClass, ... NS_REQUIRES_NIL_TERMINATION;
解决方法:
在swift项目中新建oc类如下:
#import &
- java实现SMTP邮件服务器
macroli
java编程
电子邮件传递可以由多种协议来实现。目前,在Internet 网上最流行的三种电子邮件协议是SMTP、POP3 和 IMAP,下面分别简单介绍。
◆ SMTP 协议
简单邮件传输协议(Simple Mail Transfer Protocol,SMTP)是一个运行在TCP/IP之上的协议,用它发送和接收电子邮件。SMTP 服务器在默认端口25上监听。SMTP客户使用一组简单的、基于文本的
- mongodb group by having where 查询sql
qiaolevip
每天进步一点点学习永无止境mongo纵观千象
SELECT cust_id,
SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id
HAVING total > 250
db.orders.aggregate( [
{ $match: { status: 'A' } },
{
$group: {
- Struts2 Pojo(六)
Luob.
POJOstrust2
注意:附件中有完整案例
1.采用POJO对象的方法进行赋值和传值
2.web配置
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee&q
- struts2步骤
wuai
struts
1、添加jar包
2、在web.xml中配置过滤器
<filter>
<filter-name>struts2</filter-name>
<filter-class>org.apache.st