书生开源大模型-第2讲-笔记

1.环境准备

1.1环境

先克隆我们的环境

bash /root/share/install_conda_env_internlm_base.sh internlm-demo

1.2 模型参数

下载或者复制下来,开发机中已经有一份参数了

mkdir -p /root/model/Shanghai_AI_Laboratory
cp -r /root/share/temp/model_repos/internlm-chat-7b /root/model/Shanghai_AI_Laboratory
# 下载会慢些
import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm-chat-7b', cache_dir='/root/model', revision='v1.0.3')

注意这里复制好参数后,在下面的代码中要替换成我们自己的模型参数位置。

web_demolode_model方法

def load_model():
    model = (
        AutoModelForCausalLM.from_pretrained("/root/model/Shanghai_AI_Laboratory/internlm-chat-7b", trust_remote_code=True)
        .to(torch.bfloat16)
        .cuda()
    )
    tokenizer = AutoTokenizer.from_pretrained("/root/model/Shanghai_AI_Laboratory/internlm-chat-7b", trust_remote_code=True)
    return model, tokenizer

1.3代码

github上clone模型代码以及创建一个demo

cd /root/code
git clone https://gitee.com/internlm/InternLM.git

# 切换 commit 版本,与教程 commit 版本保持一致,可以让大家更好的复现。
cd InternLM
git checkout 3028f07cb79e5b1d7342f4ad8d11efad3fd13d17

demo

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM


model_name_or_path = "/root/model/Shanghai_AI_Laboratory/internlm-chat-7b"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto')
model = model.eval()

system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""

messages = [(system_prompt, '')]

print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")

while True:
    input_text = input("User  >>> ")
    input_text = input_text.replace(' ', '')
    if input_text == "exit":
        break
    response, history = model.chat(tokenizer, input_text, history=messages)
    messages.append((input_text, response))
    print(f"robot >>> {response}")

image-20240207161056747

2.web_demo

在我们本机上去运行一个demo。

2.1 SSH

首先创建我们的ssh密钥。(一直敲回车让他默认位置即可

ssh-keygen -t rsa

完成后使用cat ~\.ssh\id_rsa.pub即可查看。

我们将其全部复制下来,然后回到 InternStudio 控制台,点击配置 SSH Key。

书生开源大模型-第2讲-笔记_第1张图片

然后根据控制台上的端口号使用如下命令即可链接

ssh -CNg -L 6006:127.0.0.1:6006 [email protected] -p {端口号}

2.2 运行

终端中输入

streamlit run web_demo.py --server.address 127.0.0.1 --server.port 6006

等待模型加载即可

书生开源大模型-第2讲-笔记_第2张图片

3.Lagent 智能体工具调用 Demo

3.1环境准备

跟1.1中一样

3.2 模型

cd /root/code
git clone https://gitee.com/internlm/lagent.git
cd /root/code/lagent
git checkout 511b03889010c4811b1701abb153e02b8e94fb5e # 尽量保证和教程commit版本一致
pip install -e . # 源码安装

3.3修改代码

应该做的也是修改模型参数文件

import copy
import os

import streamlit as st
from streamlit.logger import get_logger

from lagent.actions import ActionExecutor, GoogleSearch, PythonInterpreter
from lagent.agents.react import ReAct
from lagent.llms import GPTAPI
from lagent.llms.huggingface import HFTransformerCasualLM


class SessionState:

    def init_state(self):
        """Initialize session state variables."""
        st.session_state['assistant'] = []
        st.session_state['user'] = []

        #action_list = [PythonInterpreter(), GoogleSearch()]
        action_list = [PythonInterpreter()]
        st.session_state['plugin_map'] = {
            action.name: action
            for action in action_list
        }
        st.session_state['model_map'] = {}
        st.session_state['model_selected'] = None
        st.session_state['plugin_actions'] = set()

    def clear_state(self):
        """Clear the existing session state."""
        st.session_state['assistant'] = []
        st.session_state['user'] = []
        st.session_state['model_selected'] = None
        if 'chatbot' in st.session_state:
            st.session_state['chatbot']._session_history = []


class StreamlitUI:

    def __init__(self, session_state: SessionState):
        self.init_streamlit()
        self.session_state = session_state

    def init_streamlit(self):
        """Initialize Streamlit's UI settings."""
        st.set_page_config(
            layout='wide',
            page_title='lagent-web',
            page_icon='./docs/imgs/lagent_icon.png')
        # st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow')
        st.sidebar.title('模型控制')

    def setup_sidebar(self):
        """Setup the sidebar for model and plugin selection."""
        model_name = st.sidebar.selectbox(
            '模型选择:', options=['gpt-3.5-turbo','internlm'])
        if model_name != st.session_state['model_selected']:
            model = self.init_model(model_name)
            self.session_state.clear_state()
            st.session_state['model_selected'] = model_name
            if 'chatbot' in st.session_state:
                del st.session_state['chatbot']
        else:
            model = st.session_state['model_map'][model_name]

        plugin_name = st.sidebar.multiselect(
            '插件选择',
            options=list(st.session_state['plugin_map'].keys()),
            default=[list(st.session_state['plugin_map'].keys())[0]],
        )

        plugin_action = [
            st.session_state['plugin_map'][name] for name in plugin_name
        ]
        if 'chatbot' in st.session_state:
            st.session_state['chatbot']._action_executor = ActionExecutor(
                actions=plugin_action)
        if st.sidebar.button('清空对话', key='clear'):
            self.session_state.clear_state()
        uploaded_file = st.sidebar.file_uploader(
            '上传文件', type=['png', 'jpg', 'jpeg', 'mp4', 'mp3', 'wav'])
        return model_name, model, plugin_action, uploaded_file

    def init_model(self, option):
        """Initialize the model based on the selected option."""
        if option not in st.session_state['model_map']:
            if option.startswith('gpt'):
                st.session_state['model_map'][option] = GPTAPI(
                    model_type=option)
            else:
                st.session_state['model_map'][option] = HFTransformerCasualLM(
                    '/root/model/Shanghai_AI_Laboratory/internlm-chat-7b')
        return st.session_state['model_map'][option]

    def initialize_chatbot(self, model, plugin_action):
        """Initialize the chatbot with the given model and plugin actions."""
        return ReAct(
            llm=model, action_executor=ActionExecutor(actions=plugin_action))

    def render_user(self, prompt: str):
        with st.chat_message('user'):
            st.markdown(prompt)

    def render_assistant(self, agent_return):
        with st.chat_message('assistant'):
            for action in agent_return.actions:
                if (action):
                    self.render_action(action)
            st.markdown(agent_return.response)

    def render_action(self, action):
        with st.expander(action.type, expanded=True):
            st.markdown(
                "

插 件:" # noqa E501 + action.type + '

'
, unsafe_allow_html=True) st.markdown( "

思考步骤:" # noqa E501 + action.thought + '

'
, unsafe_allow_html=True) if (isinstance(action.args, dict) and 'text' in action.args): st.markdown( "

执行内容:

"
, # noqa E501 unsafe_allow_html=True) st.markdown(action.args['text']) self.render_action_results(action) def render_action_results(self, action): """Render the results of action, including text, images, videos, and audios.""" if (isinstance(action.result, dict)): st.markdown( "

执行结果:

"
, # noqa E501 unsafe_allow_html=True) if 'text' in action.result: st.markdown( "

" + action.result['text'] + '

'
, unsafe_allow_html=True) if 'image' in action.result: image_path = action.result['image'] image_data = open(image_path, 'rb').read() st.image(image_data, caption='Generated Image') if 'video' in action.result: video_data = action.result['video'] video_data = open(video_data, 'rb').read() st.video(video_data) if 'audio' in action.result: audio_data = action.result['audio'] audio_data = open(audio_data, 'rb').read() st.audio(audio_data) def main(): logger = get_logger(__name__) # Initialize Streamlit UI and setup sidebar if 'ui' not in st.session_state: session_state = SessionState() session_state.init_state() st.session_state['ui'] = StreamlitUI(session_state) else: st.set_page_config( layout='wide', page_title='lagent-web', page_icon='./docs/imgs/lagent_icon.png') # st.header(':robot_face: :blue[Lagent] Web Demo ', divider='rainbow') model_name, model, plugin_action, uploaded_file = st.session_state[ 'ui'].setup_sidebar() # Initialize chatbot if it is not already initialized # or if the model has changed if 'chatbot' not in st.session_state or model != st.session_state[ 'chatbot']._llm: st.session_state['chatbot'] = st.session_state[ 'ui'].initialize_chatbot(model, plugin_action) for prompt, agent_return in zip(st.session_state['user'], st.session_state['assistant']): st.session_state['ui'].render_user(prompt) st.session_state['ui'].render_assistant(agent_return) # User input form at the bottom (this part will be at the bottom) # with st.form(key='my_form', clear_on_submit=True): if user_input := st.chat_input(''): st.session_state['ui'].render_user(user_input) st.session_state['user'].append(user_input) # Add file uploader to sidebar if uploaded_file: file_bytes = uploaded_file.read() file_type = uploaded_file.type if 'image' in file_type: st.image(file_bytes, caption='Uploaded Image') elif 'video' in file_type: st.video(file_bytes, caption='Uploaded Video') elif 'audio' in file_type: st.audio(file_bytes, caption='Uploaded Audio') # Save the file to a temporary location and get the path file_path = os.path.join(root_dir, uploaded_file.name) with open(file_path, 'wb') as tmpfile: tmpfile.write(file_bytes) st.write(f'File saved at: {file_path}') user_input = '我上传了一个图像,路径为: {file_path}. {user_input}'.format( file_path=file_path, user_input=user_input) agent_return = st.session_state['chatbot'].chat(user_input) st.session_state['assistant'].append(copy.deepcopy(agent_return)) logger.info(agent_return.inner_steps) st.session_state['ui'].render_assistant(agent_return) if __name__ == '__main__': root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) root_dir = os.path.join(root_dir, 'tmp_dir') os.makedirs(root_dir, exist_ok=True) main()

3.4运行

与2.1中一样,先本机链接

ssh -CNg -L 6006:127.0.0.1:6006 [email protected] -p {端口号}

然后远程终端运行即可

streamlit run /root/code/lagent/examples/react_web_demo.py --server.address 127.0.0.1 --server.port 6006

书生开源大模型-第2讲-笔记_第3张图片

我尝试了上传一张简单方程的图片,但是似乎失败了,模型并不能理解图中内容。(图中是3+x=6)书生开源大模型-第2讲-笔记_第4张图片

4.浦语·灵笔图文理解创作 Demo

4.1环境

从本地克隆一个已有的pytorch 2.0.1 的环境

/root/share/install_conda_env_internlm_base.sh xcomposer-demo

接下来运行以下命令,安装 transformersgradio 等依赖包

pip install transformers==4.33.1 timm==0.4.12 sentencepiece==0.1.99 gradio==3.44.4 markdown2==2.4.10 xlsxwriter==3.1.2 einops accelerate

4.2模型准备

复制比较快

mkdir -p /root/model/Shanghai_AI_Laboratory
cp -r /root/share/temp/model_repos/internlm-xcomposer-7b /root/model/Shanghai_AI_Laboratory

4.3代码

git clone https://gitee.com/internlm/InternLM-XComposer.git
cd /root/code/InternLM-XComposer
git checkout 3e8c79051a1356b9c388a6447867355c0634932d  # 最好保证和教程的 commit 版本一致

4.4运行

cd /root/code/InternLM-XComposer
python examples/web_demo.py  \
    --folder /root/model/Shanghai_AI_Laboratory/internlm-xcomposer-7b \
    --num_gpus 1 \
    --port 6006

书生开源大模型-第2讲-笔记_第5张图片

可以自动生成内容,并自动寻找合适图片!

其中还有多模态对话demo

书生开源大模型-第2讲-笔记_第6张图片

你可能感兴趣的:(开源,笔记)