MIT-BEVFusion系列八--onnx导出1 综述及相机网络导出

目录

  • 综述
    • export-camera.py
      • 加载模型
      • 加载数据
      • 生成需要导出成 onnx 的模块
        • Backbone 模块
        • VTransform 模块
      • 生成 onnx
        • 使用 pytorch 原生的伪量化计算方法
        • 导出 camera.backbone.onnx
        • 导出 camera.vtransform.onnx

综述

bevfusion的各个部分的实现有着鲜明的特点,并且相互独立,特别是考虑到后续部署的需要,这里将整个网络,分成多个部分,分别导出onnx,方便后续部署。

MIT-BEVFusion系列八--onnx导出1 综述及相机网络导出_第1张图片

export-camera.py

相机部分导出思路如下:
1)骨干网络的选择
  对于骨干网络来说,选择了Resnet50作为骨干网络。精度会掉一点,但是收益非常大,益于部署。

2)网络拆分
  bev_pool有着高性能计算的需求,是使用cuda核函数实现的。

  bev_pool的输入,依赖于bev_pool之前的网络的输出,bev_pool的输出,需要有个池化,使得360360大小的bev池化成180180。

  所以bev_pool把整个网络,从中间分隔。

目前思路如下

  1. bev_pool前的网络,导出onnx,最终用TRT推理。
  2. bev_pool部分使用cuda核函数实现。
  3. bev_pool后的网络,导出onnx,最终用TRT推理。

MIT-BEVFusion系列八--onnx导出1 综述及相机网络导出_第2张图片

加载模型

在这里插入图片描述

这里选择经过 ptq 量化后的 bevfusion 模型。

  • Args

Namespace(ckpt='qat/ckpt/bevfusion_ptq.pth', fp16=False)

加载数据

在这里插入图片描述

  • Data数据中有什么
    MIT-BEVFusion系列八--onnx导出1 综述及相机网络导出_第3张图片

MIT-BEVFusion系列八--onnx导出1 综述及相机网络导出_第4张图片

在这里插入图片描述

加载后续生成计算图时需要的数据。其实就是提供了一个全是0的样本数据。

生成需要导出成 onnx 的模块

Backbone 模块

CUDA-BEVFusion选择使用子类化的方式,从model也就是整个模型中,摘出自己想要的相机部分,构建成camera_model
在这里插入图片描述

下图是具体子类化实现方式,子类化要对mit-bevfusion的代码、网络十分熟悉,有着充分的理解。
MIT-BEVFusion系列八--onnx导出1 综述及相机网络导出_第5张图片

下图是mit-bevfusion的代码,会发现二者很像。子类化要忠实于原本的python算法,在这个基础上进行修改,实现自己想要的功能。
MIT-BEVFusion系列八--onnx导出1 综述及相机网络导出_第6张图片

下方也是原mit-bevfusion的代码,可以看到原本的输出只有1个,而SubclassCameraModule里的get_cam_feats有两个输出。这个
MIT-BEVFusion系列八--onnx导出1 综述及相机网络导出_第7张图片

这里创建了一个SubclassCameraModule类,用于在 BEVFusion 模型中提取部分模型用于导出 onnx。

  • init 函数就是通常的初始化函数。

  • forward 函数是基于 bevfusion 中的 extract_camera_features 函数的修改,对self.encoders["camera"][vtransforms]进行了较多修改。

    • 取消了 get_geometrybev_pool 的计算,并且省去了深度和图像特征的外积操作。之后生成的计算图包含了 Resnet50、GeneralizedLSSFPN、dtransform、depthnet 和两个切片操作。

    • 输出从原本的一个输出,

    • Resnet50
      MIT-BEVFusion系列八--onnx导出1 综述及相机网络导出_第8张图片

      MIT-BEVFusion系列八--onnx导出1 综述及相机网络导出_第9张图片

      MIT-BEVFusion系列八--onnx导出1 综述及相机网络导出_第10张图片

      MIT-BEVFusion系列八--onnx导出1 综述及相机网络导出_第11张图片

    • GeneralizedLSSFPN(Neck)、dtransform、depthnet
      MIT-BEVFusion系列八--onnx导出1 综述及相机网络导出_第12张图片

    • 切片
      MIT-BEVFusion系列八--onnx导出1 综述及相机网络导出_第13张图片

  • 从onnx中可以明显的看出,SubclassCameraModule类的输出修改为两个。

    • 取消外积,这样输入bev_pool的数据规模大大减少。从161183288*80拆成了两个如图形状的数据。
VTransform 模块

在这里插入图片描述

BaseDepthTransform 中的下采样操作,将 bev pool 的输出作为输入,这里仅导出 downsampling 的计算图。

生成 onnx

使用 pytorch 原生的伪量化计算方法

在这里插入图片描述

导出 camera.backbone.onnx

MIT-BEVFusion系列八--onnx导出1 综述及相机网络导出_第14张图片

根据 SubclassCameraModule.forward 中的流程生成计算图,再经过简化(126行)生成最终的 camera.backbone.onnx

导出 camera.vtransform.onnx

MIT-BEVFusion系列八--onnx导出1 综述及相机网络导出_第15张图片

根据 DepthLSSTransform.downsample 模块生成计算图,保存为 camera.vtransform.onnx

你可能感兴趣的:(bevfusion,onnx,量化,自动驾驶,bevfusion)