手记实用系列文章:
语料预处理封装类:
#coding=utf-8
import os
import jieba
import sys
import re
import time
import jieba.posseg as pseg
sys.path.append("../")
jieba.load_userdict("../Database/userdict.txt") # 加载自定义分词词典
'''
title:利用结巴分词进行文本语料处理:单文本处理器、批量文件处理器
1 首先对文本进行遍历查找
2 创建原始文本的保存结构
3 对原文本进行结巴分词和停用词处理
4 对预处理结果进行标准化格式,并保存原文件结构路径
author:白宁超
myblog:http://www.cnblogs.com/baiboy/
'''
'''
分词.词性标注以及去停用词
stopwordspath: 停用词路径
dealpath:中文数据预处理文件的路径
savepath:中文数据预处理结果的保存路径
'''
def cutTxtWord(dealpath,savepath,stopwordspath):
stopwords = {}.fromkeys([ line.rstrip() for line in open(stopwordspath,"r",encoding='utf-8')]) # 停用词表
with open(dealpath,"r",encoding='utf-8') as f:
txtlist=f.read() # 读取待处理的文本
words =pseg.cut(txtlist) # 带词性标注的分词结果
cutresult=""# 获取去除停用词后的分词结果
for word, flag in words:
if word not in stopwords:
cutresult += word+"/"+flag+" " #去停用词
getFlag(cutresult,savepath) #
'''
分词.词性标注以及去停用词
stopwordspath: 停用词路径
read_folder_path :中文数据预处理文件的路径
write_folder_path :中文数据预处理结果的保存路径
filescount=300 #设置文件夹下文件最多多少个
'''
def cutFileWord(read_folder_path,write_folder_path,stopwordspath):
# 停用词表
stopwords = {}.fromkeys([ line.rstrip() for line in open(stopwordspath,"r",encoding='utf-8')])
# 获取待处理根目录下的所有类别
folder_list = os.listdir(read_folder_path)
# 类间循环
for folder in folder_list:
#某类下的路径
new_folder_path = os.path.join(read_folder_path, folder)
# 创建保存文件目录
path=write_folder_path+folder #保存文件的子文件
isExists=os.path.exists(path)
if not isExists:
os.makedirs(path)
print(path+' 创建成功')
else: pass
save_folder_path = os.path.join(write_folder_path, folder)#某类下的保存路径
print('--> 请稍等,正在处理中...')
# 类内循环
files = os.listdir(new_folder_path)
j = 1
for file in files:
if j > len(files): break
dealpath = os.path.join(new_folder_path, file) #处理单个文件的路径
with open(dealpath,"r",encoding='utf-8') as f:
txtlist=f.read()
# python 过滤中文、英文标点特殊符号
# txtlist1 = re.sub("[\s+\.\!\/_,$%^*(+\"\']+|[+——!,。?、~@#¥%……&*()]+", "",txtlist)
words =pseg.cut(txtlist) # 带词性标注的分词结果
cutresult="" # 单个文本:分词后经停用词处理后的结果
for word, flag in words:
if word not in stopwords:
cutresult += word+"/"+flag+" " #去停用词
savepath = os.path.join(save_folder_path,file)
getFlag(cutresult,savepath)
j += 1
'''
做词性筛选
cutresult:str类型,初切分的结果
savepath: 保存文件路径
'''
def getFlag(cutresult,savepath):
txtlist=[] #过滤掉的词性后的结果
#词列表为自己定义要过滤掉的词性
cixing=["/x","/zg","/uj","/ul","/e","/d","/uz","/y"]
for line in cutresult.split('\n'):
line_list2=re.split('[ ]', line)
line_list2.append("\n") # 保持原段落格式存在
line_list=line_list2[:]
for segs in line_list2:
for K in cixing:
if K in segs:
line_list.remove(segs)
break
else:
pass
txtlist.extend(line_list)
# 去除词性标签
resultlist=txtlist[:]
flagresult=""
for v in txtlist:
if "/" in v:
slope=v.index("/")
letter=v[0:slope]+" "
flagresult+= letter
else:
flagresult+= v
standdata(flagresult,savepath)
'''
标准化处理,去除空行,空白字符等。
flagresult:筛选过的结果
'''
def standdata(flagresult,savepath):
f2=open(savepath,"w",encoding='utf-8')
for line in flagresult.split('\n'):
if len(line)>=2:
line_clean="/ ".join(line.split())
lines=line_clean+" "+"\n"
f2.write(lines)
else: pass
f2.close()
if __name__ == '__main__' :
t1=time.time()
# 测试单个文件
dealpath="../Database/SogouC/FileTest/1.txt"
savepath="../Database/SogouCCut/FileTest/1.txt"
stopwordspath='../Database/stopwords/CH_stopWords.txt'
stopwordspath1='../Database/stopwords/HG_stopWords.txt' # 哈工大停用词表
# 批量处理文件夹下的文件
# rfolder_path = '../Database/SogouC/Sample/'
rfolder_path = '../Database/SogouC/FileNews/'
# 分词处理后保存根路径
wfolder_path = '../Database/SogouCCut/'
# 中文语料预处理器
# cutTxtWord(dealpath,savepath,stopwordspath) # 单文本预处理器
cutFileWord(rfolder_path,wfolder_path,stopwordspath) # 多文本预处理器
t2=time.time()
print("中文语料语处理完成,耗时:"+str(t2-t1)+"秒。") #反馈结果
执行结果:
python中文语料分词处理,按字或者词cut_sentence
cut_sentence.py import string import jieba import jieba.posseg as psg import logging #关闭jieba日制 jieb ...
Python中结巴分词使用手记
手记实用系列文章: 1 结巴分词和自然语言处理HanLP处理手记 2 Python中文语料批量预处理手记 3 自然语言处理手记 4 Python中调用自然语言处理工具HanLP手记 5 Python中 ...
基于CBOW网络手动实现面向中文语料的word2vec
最近在工作之余学习NLP相关的知识,对word2vec的原理进行了研究.在本篇文章中,尝试使用TensorFlow自行构建.训练出一个word2vec模型,以强化学习效果,加深理解. 一.背景知识: ...
wiki中文语料的word2vec模型构建
一.利用wiki中文语料进行word2vec模型构建 1)数据获取 到wiki官网下载中文语料,下载完成后会得到命名为zhwiki-latest-pages-articles.xml.bz2的文件,里 ...
python调用hanlp分词包手记
python调用hanlp分词包手记 Hanlp作为一款重要的分词工具,本月初的时候看到大快搜索发布了hanlp的1.7版本,新增了文本聚类.流水线分词等功能.关于hanlp1.7版本的新功能,后 ...
word2vec词向量处理中文语料
word2vec介绍 word2vec官网:https://code.google.com/p/word2vec/ word2vec是google的一个开源工具,能够根据输入的词的集合计算出词与词之间 ...
利用RNN进行中文文本分类(数据集是复旦中文语料)
利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) 1.训练词向量 数据预处理参考利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) ,现在我们有了分词 ...
【原】python中文文本挖掘资料集合
这些网址是我在学习python中文文本挖掘时觉得比较好的网站,记录一下,后期也会不定期添加: 1.http://www.52nlp.cn/python-%E7%BD%91%E9%A1%B5%E7% ...
Eclipse搭建Python开发环境+Python中文处理
1.基本需求 1.Eclipse 集成开发环境下载 http://115.com/file/c2vz7io5 JDK6下载 http://115.com/file/c2vz7idq 2. ...
随机推荐
[Solution] ASP.NET Identity(2) 空的项目使用
在本节中,我将说明将ASP.NET Identity添加到现有的项目或者一个空项目.我将介绍你需要添加的Nuget和Class.此示例中,会使用LocalDB. 本节目录: 注册用户 登入登出 注册用 ...
在C#中开启事务
1.为什么要开启事务: 举一个简单的例子:在银行业务中,有一条记账原则,即又借有贷.为了保证这种原则,每发生一笔银行业务,就必须保证会计账目上借方科目和贷方科目至少个少一笔,并且这两笔要么同时成功,要 ...
(转载)顺序栈c++实现
(转载)http://myswirl.blog.163.com/blog/static/51318642200882310239324/ SqStack.h********************** ...
Select specified items from Tuple List
#Select specified items from Tuple List ##Select one item to form list `tupleList.Select(element =&g ...
WPF中静态引用资源与动态引用资源的区别
WPF中静态引用资源与动态引用资源的区别 WPF中引用资源分为静态引用与动态引用,两者的区别在哪里呢?我们通过一个小的例子来理解. 点击“Update”按钮,第2个按钮的文字会变成“更上一层楼”, ...
Lodop打印维护PRINT_SETUP本地缓存ini文件
针对千差万别的客户端,Lodop提供了打印维护(PRINT_SETUP),可以针对某个客户端微调,调整结果保存在客户端本地,不会影响其他访问网站的用户的使用. 打印维护使用方法:1.PRINT_INI ...
RTP推流及验证
[时间:2018-07] [状态:Open] [关键词:rtp,rtcp, ffmpeg,ffplay,sdp,h264,mp2,ts,推流] 近期在学习有关RTP/RTCP的资料,发现看了很多资料, ...
countdownlatch 和 CyclicBarrier 和 Semaphore
cdl用的是aqs,共享的是aqs那个volatile的state,阻塞线程列表用的也是aqs的 cb用的是reentrantlock+condition,当然rel用的也是aqs不过不同的是用的是互 ...
深入出不来nodejs源码-timer模块(C++篇)
终于可以填上坑了. 简单回顾一下之前JS篇内容,每一次setTimeout的调用,会在一个对象中添加一个键值对,键为延迟时间,值为一个链表,将所有该时间对应的事件串起来,图如下: 而每一个延迟键值对的 ...