1、创建Hadoop项目
2、创建包、类
这里使用hdfs.WordCount为例
3、编写自定Mapper和Reducer程序
MyMapper类
static class MyMapper extends
Mapper<LongWritable, Text, Text, LongWritable> {
@Override
protected void map(LongWritable k1, Text v1, Context context)
throws IOException, InterruptedException {
// 对内容进行分词处理存到字符数组内
StringTokenizer tokenizer = new StringTokenizer(v1.toString());
// 创建Text k2
Text k2 = new Text();
// 遍历写入context中
while (tokenizer.hasMoreTokens()) {
k2.set(tokenizer.nextToken());
context.write(k2, new LongWritable(1));
}
}
}
Reducer类
static class MyReducer extends
Reducer<Text, LongWritable, Text, LongWritable> {
@Override
protected void reduce(Text k2, Iterable<LongWritable> v2s,
Context context) throws IOException, InterruptedException {
long sum = 0;
for(LongWritable val : v2s){
sum += val.get();
}
context.write(k2, new LongWritable(sum));
}
}
编写main驱动方法
public static void main(String[] args) throws Exception {
if(args.length != 2){
System.err.print("Usage:wordcount");
System.exit(2);
}
Configuration conf = new Configuration();
Job job = new Job(conf,WordCount.class.getSimpleName());
//用eclipse插件运行相当于是jar包运行
job.setJarByClass(WordCount.class);
//设置mapper
job.setMapperClass(MyMapper.class);
//设置map输出k2的类型
job.setMapOutputKeyClass(Text.class);
//设置map输出v2的类型
job.setMapOutputValueClass(LongWritable.class);
//设置分区类
job.setPartitionerClass(HashPartitioner.class);
//设置作业数量
job.setNumReduceTasks(1);
//设置reducer类
job.setReducerClass(MyReducer.class);
//设置输出的格式
job.setOutputFormatClass(TextOutputFormat.class);
//设置k3的输出类型
job.setOutputKeyClass(Text.class);
//设置v3的输出类型
job.setOutputValueClass(LongWritable.class);
//这里是从外面传入参数
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
//提交任务,如果返回false代表有异常,使用system.exit结束java虚拟机,如果没问题返回0正常执行.
System.exit(job.waitForCompletion(true)?0:1);
}
4、运行mapreduce程序远程调用hadoop。
先配置访问路径
写hdfs访问路径。
现在使用Run as—Run on hadoop会出现一个错误
14/03/11 15:58:22 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
14/03/11 15:58:22 ERROR security.UserGroupInformation: PriviledgedActionException as:Sky cause:java.io.IOException: Failed to set permissions of path: \tmp\hadoop-Sky\mapred\staging\Sky1823204560\.staging to 0700
Exception in thread "main" java.io.IOException: Failed to set permissions of path: \tmp\hadoop-Sky\mapred\staging\Sky1823204560\.staging to 0700
at org.apache.hadoop.fs.FileUtil.checkReturnValue(FileUtil.java:689)
at org.apache.hadoop.fs.FileUtil.setPermission(FileUtil.java:662)
at org.apache.hadoop.fs.RawLocalFileSystem.setPermission(RawLocalFileSystem.java:509)
at org.apache.hadoop.fs.RawLocalFileSystem.mkdirs(RawLocalFileSystem.java:344)
at org.apache.hadoop.fs.FilterFileSystem.mkdirs(FilterFileSystem.java:189)
at org.apache.hadoop.mapreduce.JobSubmissionFiles.getStagingDir(JobSubmissionFiles.java:116)
at org.apache.hadoop.mapred.JobClient$2.run(JobClient.java:918)
at org.apache.hadoop.mapred.JobClient$2.run(JobClient.java:912)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1149)
at org.apache.hadoop.mapred.JobClient.submitJobInternal(JobClient.java:912)
at org.apache.hadoop.mapreduce.Job.submit(Job.java:500)
at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:530)
at hdfs.WordCount.main(WordCount.java:58)
这个是windows下的权限问题,在linux上运行时正常的。
解决方法:
打开F:\Software\Hadoop\hadoop-1.1.2\src\core\org\apache\hadoop\fs\FileUtil.java
注释checkReturnValue函数中的内容,保存即可!
再运行时正常输出计算器,并生成了新的目录。输出目录不能存在,由hadoop自动创建完成!
14/03/11 16:08:40 INFO mapred.JobClient: map 100% reduce 100%
14/03/11 16:08:41 INFO mapred.JobClient: Job complete: job_local_0001
14/03/11 16:08:41 INFO mapred.JobClient: Counters: 19
14/03/11 16:08:41 INFO mapred.JobClient: File Output Format Counters
14/03/11 16:08:41 INFO mapred.JobClient: Bytes Written=2154020
14/03/11 16:08:41 INFO mapred.JobClient: FileSystemCounters
14/03/11 16:08:41 INFO mapred.JobClient: FILE_BYTES_READ=631320575
14/03/11 16:08:41 INFO mapred.JobClient: HDFS_BYTES_READ=141910490
14/03/11 16:08:41 INFO mapred.JobClient: FILE_BYTES_WRITTEN=774430506
14/03/11 16:08:41 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=2154020
14/03/11 16:08:41 INFO mapred.JobClient: File Input Format Counters
14/03/11 16:08:41 INFO mapred.JobClient: Bytes Read=70955245
14/03/11 16:08:41 INFO mapred.JobClient: Map-Reduce Framework
14/03/11 16:08:41 INFO mapred.JobClient: Reduce input groups=59150
14/03/11 16:08:41 INFO mapred.JobClient: Map output materialized bytes=142981973
14/03/11 16:08:41 INFO mapred.JobClient: Combine output records=0
14/03/11 16:08:41 INFO mapred.JobClient: Map input records=255015
14/03/11 16:08:41 INFO mapred.JobClient: Reduce shuffle bytes=0
14/03/11 16:08:41 INFO mapred.JobClient: Reduce output records=59150
14/03/11 16:08:41 INFO mapred.JobClient: Spilled Records=26709860
14/03/11 16:08:41 INFO mapred.JobClient: Map output bytes=128572984
14/03/11 16:08:41 INFO mapred.JobClient: Total committed heap usage (bytes)=305004544
14/03/11 16:08:41 INFO mapred.JobClient: Combine input records=0
14/03/11 16:08:41 INFO mapred.JobClient: Map output records=7201751
14/03/11 16:08:41 INFO mapred.JobClient: SPLIT_RAW_BYTES=99
14/03/11 16:08:41 INFO mapred.JobClient: Reduce input records=7201751